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Abstract
We construct the fusion operators in the generalized τ (2)-model using the fused
L-operators, and verify the fusion relations with the truncation identity. The
algebraic Bethe-ansatz discussion is conducted on two special classes of τ (2)

which include the superintegrable chiral Potts model. We then perform the
parallel discussion on the XXZ spin chain at roots of unity, and demonstrate
that the sl2-loop-algebra symmetry exists for the root-of-unity XXZ spin chain
with a higher spin, where the evaluation parameters for the symmetry algebra
are identified by the explicit Fabricius–McCoy current for the Bethe states.
Parallels are also drawn to the comparison with the superintegrable chiral Potts
model.

PACS numbers: 05.50.+q, 02.20.Tw, 75.10.Jm
Mathematics Subject Classification: 17B65, 39B72, 82B23

1. Introduction

In this paper, we investigate the uniform structure about symmetry of various lattice models1,
namely the generalized τ (2)-model, the chiral Potts model (CPM), and XXZ spin chain of
higher spin. Parallels are also drawn to differentiating the symmetry nature which appear in
those models. The generalized τ (2)-model, also known as the Baxter–Bazhanov–Stroganov
(BBS) model [3, 7, 9, 10, 24], is the six-vertex model with a particular field (see [7, p 3]),
i.e. having the R-matrix of the asymmetric six-vertex model, (see (2.3) in this paper). Note

* In this paper, the term ‘XXZ spin chain’ means a lattice model with the L-operator associated with the trigonometric
R-matrix of the ice-type model. The ‘XXZ spin chain of higher spin’ here is named as the ‘XXZ Heisenberg model
with arbitrary spin’ in [31].
1 All the models discussed in this paper will always assume with the periodic condition.
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that the non-symmetric diagonal Boltzmann weights of this twisted R-matrix differentiates
it from the usual (gauge transformed) trigonometric R-matrix (see, for instance, [11] (3.3)
and references therein), and the usual construction of the L-operator by employing the
highest-weight representation theory of quantum groups or algebras fails in this context.
However using the cyclic N-vector representation of the finite Weyl algebra, one can construct
a five-parameter family of L-operators for the N-state generalized τ (2)-model. When the
parameters are restricted on a family of high genus curves, called the rapidities, one obtains
the τ (2)-matrix of the solvable N-state CPM. In [9] Bazhanov and Stroganov showed that
the column-transfer-matrix of the L-operator in CPM possesses properties of the Baxter’s
Q-matrix (i.e., the chiral-Potts-transfer matrix) with symmetry operators similar to, but not
exactly the same as, the sl2-loop algebra. Indeed the τ (2)-degenerate eigenvalue spectrum
occurs only in superintegrable case [39], where the Onsager-algebra-symmetry operators in
the quantum Hamiltonian chain [25] derived from the Baxter’s Q-matrix provide the precise
symmetry structure of the superintegrable τ (2)-model [40]. Due to the lack of difference
property of rapidities, the study of CPM, such as the calculation of eigenvalues [4, 5, 34] and
order parameter [8], relies on the method of functional relations among the τ (j)- and chiral-
Potts-transfer matrices, consisting of (recursive and truncation) T-fusion relation, TQ- and
QQ-relations. On the other hand, in the study of the ‘zero-field’ six-vertex model ([6, section
3]) with the usual trigonometric R-matrix, it has been extensively analysed in [15, 18, 19, 41]
that the degeneracy of the spin- 1

2XXZ Hamiltonian occurs when the anisotropic parameter q
is a root of unity with the extra sl2-loop-algebra symmetry of the system [15]. Recently, the
sl2-loop-algebra symmetry appears again in the XXZ chain of spin- N−1

2 at the Nth root of unity
[36]2. Results about the root-of-unity symmetry of the six-vertex model were first discovered
by algebraic Bethe ansatz and quantum group theory, later by the method of Baxter’s Q-
operator, and the degeneracy of eigenvalues was further found in the root-of-unity eight-vertex
model [16, 17, 20]. By this effort, Fabricius and McCoy observed the similarity between the
root-of-unity eight-vertex model and CPM, and proposed the conjectural functional relations of
the eight-vertex model by encoding the root-of-unity symmetry property in a proper Q-operator
of the theory, as an analogy to functional relations in CPM [21]. Along this line, the Q-operator
incorporated with the sl2-loop-algebra symmetry of the spin- 1

2XXZ chain at the roots of unity
was constructed in [42] where functional relations in the Fabricius–McCoy comparison were
verified. By this, we intend to make a detailed investigation about common features shown
in those known models, compare the symmetry structure, then further explore more unknown
models in the scheme of functional relations. Among the function relations, the fusion relation
with ‘truncation’ property plays a vital role in connecting the T- and Baxter’s Q-matrix. Usually
one can derive the boundary fusion relation, i.e. the ‘truncation’ identity, using the Baxter’s
TQ-relation for any Q-operator (not necessarily satisfying the QQ-relation) if a Q-matrix exists
(see, e.g., [2, 29, 37]). Conversely, the validity of boundary fusion relation may as well strongly
suggests the existence of Baxter’s Q-operator in many cases (see, e.g., [35] and references
therein). The models we shall discuss in this paper are the generic generalized τ (2)-model
(where no Q-operator is known), superintegrable CPM, and XXZ spin chain of higher spin
at the roots of unity. In the present paper, we obtain two main results related to these
models. First, by constructing the fusion matrix from the explicit fused L-operator, we
derive the fusion relations with the truncation identity for these models without relying
on the theory of Baxter’s Q-operator. Second, by the algebraic Bethe ansatz of XXZ spin
chain of higher spin at the roots of unity and certain special τ (2)-models which include

2 The XXZ chain of spin- N−1
2 at the Nth root of unity in this paper is phrased as the Nilpotent Bazhanov–Stroganov

model in [36].
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the superintegrable CPM, we show the sl2-loop-algebra symmetry of the root-of-unity XXZ
chain for a higher spin as in the spin- 1

2 case [15, 18, 19]. Furthermore, they all share
the same structure as the superintegrable CPM about the Bethe equation and the evaluation
(Drinfeld) polynomial for the symmetry algebra as in [41, 42]. As a consequence, a conjecture
raised in [36] about the simple polynomial property for the sl2-loop-algebra evaluation
parameters in the XXZ chain of spin-N−1

2 has been justified. Note that for the τ (2)-model
in the generic case where algebraic Bethe ansatz cannot be applied due to the lack of
peudovacuum state, our fusion-matrix study strongly suggests, with computational evidences
in cases, that the fusion relations with the truncation identity always hold. Hence by [24], the
separation-of-variables method provides the solution of Baxter equation associated with the
τ (2)-model.

The quantum inverse scattering method/algebraic Bethe ansatz developed by the
Leningrad school in the early 1980s [23, 28, 33] systematized earlier results about the Bethe
ansatz of two-dimensional lattice models in an algebraic scheme by using the Yang–Baxter
(YB) equation as a central role of solvability. A YB solution defines a local L-operator, which
gives rise to the algebra of quantum monodromy matrices, called the ABCD-algebra. From
the ABCD-algebra, one can construct a set of commuting transfer matrices, which in principal
could be simultaneously diagonalized using a basis derived from the pseudovacuum state by
the Bethe-ansatz technique. Furthermore, one can define the quantum determinant of the
algebra, a concept first introduced in [26] (or see [28, Chapter VIII]), and played an important
role in deriving the fused transfer matrices in this work. It is known that this algebraic method
has long been used in the investigation of XXZ spin chains (see, e.g., [31, 44] references
therein), and in the τ (2)-model [45, 46]. For the XXZ spin chain of higher spin in the root-
of-unity case, it possesses some extra symmetry carrying the ‘evaluation’ parameters, which
indeed determine the eigenvalues of fusion matrices and implicitly encode symmetry of the
model. Hence a new structure, not seen in the general XXZ chain of higher spin, appears in the
root-of-unity theory. In this paper, we employ the ABCD-algebra method in the generalized
τ (2)-model and the root-of-unity XXZ chain of higher spin to study the fusion matrix through
some explicit fused L-operators. The boundary fusion relation will be our main concern.
The technique is first to make use of the quantum determinant of L-operators, not only on
the explicit form, but also its nature in commuting the fusion-product of elements so that the
recursive fusion relation holds. Next the detailed analysis about ‘averaging’ the L-operator
leads to the boundary fusion relation. Since the ABCD-algebra of generalized τ (2)-model
carries a non-equivalent, though similar, structure as the algebra for the XXZ spin chain due
to the non-symmetric Boltzmann weights in the R-matrix of τ (2)-model, we shall provide a
more elaborate discussion about the algebraic Bethe ansatz of the τ (2)-model (though many
like routine exercises in the field). This is because the correct formulation with the precise
expression of physical quantities is non-trivial, and required for the later CPM algebraic-Bethe-
ansatz discussion in this work when comparing it with the complete results of superintegrable
CPM derived from the functional relations [1, 4, 5, 10]. It is also needed for the parallel
symmetry discussion between superintegrable N-state CPM and the XXZ chain of spin-N−1

2 .
The algebraic Bethe ansatz is known to be applied to the superintegrable τ (2)-model; however
to what extent the results obtained by the algebraic-Bethe-ansatz method compared with the
complete τ (2)-eigenvalues and its degeneracy known in the study of CPM [1, 5, 40] has not
been fully discussed in the literature to the best of the author’s knowledge, especially about
possible symmetry structures of the model. To this end, we propose a scheme for certain
special classes of generalized τ (2)-model, with the superintegrable CPM included, where the
pseudovacuum state exists so that the algebraic-Bethe-ansatz technique can be performed
in the way like the root-of-unity XXZ spin chain. When applying to the superintegrable
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τ (2)-model, the setting enables us to conduct exact investigations of various problems. One can
rediscover the Bethe equation, fusion relations, forms of eigenvalue spectrum and evaluation
polynomials, known in the theory of CPM. Furthermore, certain eigenvectors derived from the
pseudovacuum state can also be extracted by the algebraic Bethe-ansatz method. Nevertheless,
only certain sectors of the spectrum are covered by this scheme. In the case of the root-of-
unity XXZ spin chain of higher spin, the algebraic Bethe-ansatz method produces the correct
form of evaluation polynomial for the degeneracy by a detailed analysis of the eigenvalues of
fusion matrices. Then the zero-averages of off-diagonal elements in the quantum monodromy
matrix, corresponding to the vanishing property of the N-string creation operator, give rise
to the sl2-loop-algebra symmetry of the root-of-unity six vertex model by a ‘q-scaling’
procedure in [15]. Thereupon one can identify the evaluation polynomial of sl2-loop-algebra
representation for a Bethe state through the explicit Fabricius–McCoy current ([21, (1.37)])
of the model.

This paper is organized as follows. In section 2, we discuss the fusion relations of
the generalized τ (2)-model. We begin with some preparatory work in subsection 2.1 on
the algebraic structure derived from YB relation for the generalized τ (2)-model [45, 46].
Using standard techniques in the ABCD algebra and quantum determinant for the twisted
R-matrix, we construct in subsection 2.2 the fusion operators from the fused L-operators so
that the recursive fusion relation holds. By studying the average of L-operators, we then show
evidences, verified in the cases by direct computations, that the boundary fusion relation is valid
for the generalized τ (2)-model in subsection 2.3. In section 3, we study two special classes of
BBS models, which include the superintegrable CPM, by the algebraic-Bethe-ansatz method
where the pseudo-vacuum exists. We then perform the investigation on the Bethe equation
and Bethe states for such models in subsection 3.1. The algebraic-Bethe-ansatz discussion
of special BBS models when restricted on the superintegrable τ (2)-model recovers the Bethe
equation and evaluation polynomial of Onsager-algebra symmetry in the superintegrable CPM
[1, 5, 40]. The comparison of those algebraic-Bethe-ansatz results with the complete results
known in the theory of superintegrable CPM is given in subsection 3.2. In section 4, we study
the root-of-unity symmetry of XXZ spin chain with a higher spin. First we briefly review
some basic concepts in the algebraic Bethe ansatz of XXZ spin chain that are needed for later
discussions (for more detailed information, see e.g. [23, 33] references therein). Then we
summarize results in [27, 30, 32, 35, 42, 43] about the fusion relation for the spin- 1

2XXZ

chain at roots of unity. Using the fused L-operators, we extend the construction of fusion
operators in the spin- 1

2 to the spin- d−1
2 XXZ chain at Nth root of unity for 2 � d � N in

subsection 4.1, where the fusion relations are derived. Furthermore through the fusion-matrix-
eigenvalue discussion, we extract the correct form of evaluation polynomial incorporated with
the Bethe equation. In subsection 4.2, we show that the root-of-unity XXZ chain of spin-
d−1

2 possesses the sl2-loop-algebra symmetry, and verify the evaluation polynomial by the
explicit Fabricius–McCoy current of Bethe states. In subsection 4.3, we make the comparison
between the root-of-unity XXZ chain of spin-N−1

2 and the N-state superintegrable CPM, which
are known to be closely related in the literatures [1, 5, 36]. We close in section 5 with some
concluding remarks.

2. Fusion relations and algebraic Bethe ansatz of generalized τ (2)-model

We first briefly review some basic structures in the ABCD-algebra for the generalized
τ (2)-model in subsection 2.1. Then in subsection 2.2 we construct the fusion operators as
the trace of fused L-operators so that the recursive fusion relation holds, and the boundary
fusion relation will be discussed in subsection 2.3.
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2.1. ABCD-algebra and quantum determinant in the generalized τ (2)-model

We start with some basic notions about algebraic structures in the generalized τ (2)-model. The
summary will be sketchy, but also serve to establish notations (for more detailed information,
see [45] and references therein).

For a positive integer N, we fix the Nth root of unity, ω = e
2π

√−1
N . Denote by CN the

vector space of N-cyclic vectors with {|n〉}n∈ZN
as the standard basis where ZN = Z/NZ , and

X,Z the CN -operators defined by X|n〉 = |n + 1〉, Z|n〉 = ωn|n〉 for n ∈ ZN , which satisfy
the Weyl relation, XZ = ω−1ZX, with XN = ZN = 1. The L-operator of the generalized
τ (2)-model is built upon the Weyl operators X,Z with C2-auxiliary space and CN -quantum
space3:

L(t) =
(

1 + tκX (γ − δX)Z

t(α − βX)Z−1 tαγ + βδ

κ
X

)
=:

(
A(t) B(t)

C(t) D(t)

)
, t ∈ C, (2.1)

where α, β, γ, δ, κ ∈ C are parameters, which satisfy the YB equation4

R(t/t ′)(L(t)
⊗
aux

1)(1
⊗
aux

L(t ′)) = (1
⊗
aux

L(t ′))(L(t)
⊗
aux

1)R(t/t ′), (2.2)

for the R-matrix of the asymmetric six-vertex model,

R(t) =


tω − 1 0 0 0

0 t − 1 ω − 1 0
0 t (ω − 1) (t − 1)ω 0
0 0 0 tω − 1

 . (2.3)

Then the monodromy matrix for the quantum chain of size L,
L⊗

	=1

L	(t) = L1(t) ⊗ · · · ⊗ LL(t) =
(

AL(t) BL(t)

CL(t) DL(t)

)
, L	(t) := L(t) at site 	, (2.4)

again satisfy the YB equation (2.2), and the ω-twisted trace,

τ (2)(t) := AL(ωt) + DL(ωt),

form a family of commuting operators of the L-tensor space
L⊗ CN of CN . We shall denote

the spin-shift operator of
L⊗ CN again by X

(
:= ∏L

	=1 X	

)
if no confusion could arise, which

carries the ZN -charge, denoted by Q = 0, . . . , N − 1. By

[X,AL] = [X,DL] = 0, XBL = ω−1BLX, XCL = ωCLX, (2.5)

X commutes with the τ (2)-matrix. Relation (2.2) for the monodromy matrix gives rise to an
algebra structure of the operator-entries AL(t), BL(t), CL(t),DL(t), called the ABCD-algebra
(algebra of quantum monodromy matrix), in which the following conditions hold:

[A(t), A(t ′)] = [B(t), B(t ′)] = [C(t), C(t ′)] = [D(t),D(t ′)] = 0,

(tω − t ′)A(t)B(t ′) = (t − t ′)B(t ′)A(t) + t (ω − 1)A(t ′)B(t), A,B −→ C,D,

(tω − t ′)B(t)A(t ′) = (t − t ′)ωA(t ′)B(t) + t ′(ω − 1)B(t ′)A(t), A,B −→ C,D,

(tω − t ′)C(t ′)A(t) = (t − t ′)A(t)C(t ′) + t ′(ω − 1)C(t)A(t ′), A,C −→ B,D,

(tω − t ′)A(t ′)C(t) = (t − t ′)ωC(t)A(t ′) + t (ω − 1)A(t)C(t ′), A,C −→ B,D.

(2.6)

3 Here we use the form of L-operator in accord with the convention used in [10, 40], which is essentially the transpose
of the L-operator in [24, 45].
4 Note that (2.1) satisfy the YB relation (2.2) as well for a general ω not necessary a root of unity, using the Weyl
operators X,Z with XZ = ω−1ZX.
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The quantum determinant follows from the ABCD algebra by setting t ′ = ωt :

B(ωt)A(t) = A(ωt)B(t), D(ωt)C(t) = C(ωt)D(t),

A(t)C(ωt) = ωC(t)A(ωt), B(t)D(ωt) = ωD(t)B(ωt),
(2.7)

detq(
⊗

L	)(t) := D(ωt)A(t) − C(ωt)B(t) = A(ωt)D(t) − B(ωt)C(t)

= A(t)D(ωt) − ωC(t)B(ωt) = D(t)A(ωt) − ω−1B(t)C(ωt),

or equivalently, the quantum determinant of the monodromy matrix (2.4) is characterized by
rank-one property of R(ω−1) in the following relation,

R(ω−1)(⊗L	(t)
⊗
aux

1)(1
⊗
aux

⊗L	(ωt)) = (1
⊗
aux

⊗L	(ωt))(⊗L	(t)
⊗
aux

1)R(ω−1)

= detq(⊗L	)(t) · R(ω−1), (2.8)

with the explicit form for detq(⊗L	)(t):

detq(⊗L	)(t) = q(t)LXL, q(t) := βδ

κ
+ (αδ + ωβγ )t + ωαγ κt2. (2.9)

The third- and fifth relations of (2.6) yield

A(t)B(s) = t − ωs

ω(t − s)
B(s)A(t) +

(ω − 1)t

ω(t − s)
B(t)A(s),

D(t)B(s) = ωt − s

ω(t − s)
B(s)D(t) − (ω − 1)t

ω(t − s)
B(t)D(s).

By moving B(ti)’s to the left-hand side of A(t),D(t), one obtains

A(t)

m∏
i=1

B(ti) =
m∏

i=1

t − ωti

ω(t − ti)
·

m∏
i=1

B(ti)A(t)

+
m∑

k=1

(ω − 1)t

ω(t − tk)

m∏
i=1,i �=k

tk − ωti

ω(tk − ti)
· B(t)

m∏
i=1,i �=k

B(ti)A(tk),

D(t)

m∏
i=1

B(ti) =
m∏

i=1

ωt − ti

ω(t − ti)
·

m∏
i=1

B(ti)D(t)

−
m∑

k=1

(ω − 1)t

ω(t − tk)

m∏
i=1,i �=k

ωtk − ti

ω(tk − ti)
· B(t)

m∏
i=1,i �=k

B(ti)D(tk). (2.10)

Similarly the second- and fourth relations in (2.6) yield

A(t)

m∏
i=1

C(ti) =
m∏

i=1

ωt − ti

t − ti
·

m∏
i=1

C(ti)A(t)

−
m∑

k=1

(ω − 1)tk

t − tk

m∏
i=1,i �=k

ωtk − ti

tk − ti
· C(t)

m∏
i=1,i �=k

C(ti)A(tk),

D(t)

m∏
i=1

C(ti) =
m∏

i=1

t − ωti

t − ti
·

m∏
i=1

C(ti)D(t)

+
m∑

k=1

(ω − 1)tk

t − tk

m∏
i=1,i �=k

tk − ωti

tk − ti
· C(t)

m∏
i=1,i �=k

C(ti)D(tj ). (2.11)
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Note that by scaling the t-variable, parameters in (2.1) can be reduced to the case α + γ = 0,
among which, with one more constraint ωβ + δ = 0, one can express −α = γ = y−1,−β =
ω−1δ = µ2xy−2,−κ = µ2y−2 for (x, y, µ) ∈ C3. For the N-state CPM, the rapidity variables
of L-operator (2.1) are defined by

kxN = 1 − k′µ−N, kyN = 1 − k′µN, (x, y, µ) ∈ C3, (2.12)

where k′, k are temperature-like parameters with k2 + k′2 = 1. In the superintegrable case, the
parameters in (2.1) and the quantum determinant are given by

−α = −β = γ = ω−1δ = −κ = 1, detqL(t) = ωh2(t)X, (2.13)

(see, e.g., [40, section 5]). Hereafter we shall always use h(t) to denote

h(t) := 1 − t. (2.14)

2.2. Fused L-operator in generalized τ (2)-model

Here we construct the fused L-operator L(j)(t) for the fusion τ (j)-matrix with L(2)(t) = L(t)
in (2.1).

For convenience of notations, we shall also denote the standard basis |±1〉 of the C2-
auxiliary space of L(t), and its dual basis by x̂ = |1〉 , ŷ = |−1〉; x = 〈1| , y = 〈−1|. For
non-negative integers m, n, we denote by x̂mŷn the completely symmetric (m + n)-tensor of
C2 defined by(

m + n

n

)
x̂mŷn = x̂ ⊗ · · · ⊗ x̂︸ ︷︷ ︸

m

⊗ ŷ ⊗ · · · ⊗ ŷ︸ ︷︷ ︸
n

+ all other terms by permutations,

similarly for xmyn. For j � 1, the Cj -auxiliary space is the space of completely symmetric
(j − 1)-tensors of the C2, with the following canonical basis e(j)

k and the dual basis e(j)∗
k :

e(j)

k = x̂j−1−kŷk, e(j)∗
k =

(
j − 1 − k

k

)
xj−1−kyk, k = 0, . . . , j − 1. (2.15)

The L(j)(t) is the operator
(
L(j)

k,l (t)
)

0�k,l�j−1 with the Cj -auxiliary and CN -quantum space,

where L(j)

k,l (t) is expressed by

L(j)

k,l (t) = 〈
e(j)∗
k

∣∣L(ωj−2t) ⊗aux · · · ⊗ L(ωt) ⊗aux L(t)
∣∣e(j)

l

〉
. (2.16)

Then L(j)(t) are intertwined by some R(j)-matrix. With L(j)(t) as the local operator, its

monodromy matrix defines the commuting family of τ (j)-operators of
L⊗ CN ,

τ (j)(t) = trCj

(
L⊗

	=1

L(j)

	 (ωt)

)
. (2.17)

We now show the fusion relation between τ (j+1), τ (j) and τ (j−1) through the quantum
determinant (2.9).

Consider the auxiliary-space tensor C2 ⊗Cj as a subspace of
j+1⊗ C2 with the identification

e(j+1)

k+1 = 1(
j

k+1

)((
j − 1

k + 1

)
x̂ ⊗ e(j)

k+1 +

(
j − 1

k

)
ŷ ⊗ e(j)

k

)
, k = −1, . . . , j − 1,
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and denote f
(j−1)

k := x̂ ⊗ e(j)

k+1 − ŷ ⊗ e(j)

k for 0 � k � j − 2. Then e(j+1)

l , f
(j−1)

k form a basis
of C2 ⊗ Cj with the dual basis e(j+1)∗

l , f
(j−1)∗
k expressed by

e(j+1)∗
k+1 = x ⊗ e(j)∗

k+1 + y ⊗ e(j)∗
k ,

f
(j−1)∗
k = 1(

j

k+1

)((
j − 1

k

)
x ⊗ e(j)∗

k+1 −
(

j − 1

k + 1

)
y ⊗ e(j)∗

k

)
.

Then the expression of e(j+1)

k , e(j+1)∗
l yields〈

e(j+1)∗
k

∣∣L(j+1)(t)
∣∣e(j+1)

l

〉 = 〈
e(j+1)∗
k

∣∣L(ωj−1t) ⊗aux L
(j)(t)

∣∣e(j+1)

l

〉
. (2.18)

In order to determine the rest entries of L(ωj−1t) ⊗aux L(j)(t), we need the following simple
lemma.

Lemma 2.1. The second equality in (2.8) is equivalent to the following relations:

〈x2|L(ωt) ⊗aux L(t)|̂x ∧ ŷ〉 = 〈y2|L(ωt) ⊗aux L(t)|̂x ∧ ŷ〉 = 0,
(2.19)

〈x ⊗ y|L(ωt) ⊗aux L(t)|̂x ∧ ŷ〉 = 〈y ⊗ x|L(ωt) ⊗aux L(t)| − x̂ ∧ ŷ〉 = 1
2 detqL(t),

where x̂ ∧ ŷ = 1
2 (̂x ⊗ ŷ − ŷ ⊗ x̂). Hence we have〈

e(3)∗
k

∣∣L(ωt) ⊗aux L(t)|̂x ⊗ ŷ〉 = 〈
e(3)∗
k

∣∣L(ωt) ⊗aux L(t)|̂y ⊗ x̂〉, for k = 0, 1, 2.

As a consequence, for an integer j � 2, and vi = x̂ or ŷ for 1 � i � j − 1, we have〈
e(j)∗
k

∣∣L(ωj−2t) ⊗aux · · · ⊗aux L(ωt) ⊗aux L(t)|v1 ⊗ v2 ⊗ · · · ⊗ vj−1〉
= 〈

e(j)∗
k

∣∣L(ωj−2t) ⊗aux · · · ⊗aux L(ωt) ⊗aux L(t)
∣∣vσ1 ⊗ vσ2 ⊗ · · · ⊗ vσj−1

〉
(2.20)

for 0 � k � j − 1, and all permutations σ .

Since the entries of L(ωj−1t)⊗auxL(j)(t) are determined by those of L(ωj−1t)⊗aux · · ·⊗auxL(t),
by (2.20) one has〈
e(j+1)

k+1

∣∣L(ωj−1t) ⊗aux L
(j)(t)

∣∣f (j)

k′
〉 = 0, −1 � k � j − 1, 0 � k′ � j − 2. (2.21)

Using (2.19) and (2.20), one finds〈
f

(j−1)∗
k

∣∣L(ωj−1t) ⊗aux L
(j)(t)

∣∣f (j−1)

k′
〉

= 〈
f

(j−1)∗
k

∣∣L(ωj−1t) ⊗aux L
(j)(t)|(2̂x ∧ ŷ) ⊗ x̂j−k′−2 ⊗ ŷk′ 〉

= 1(
j

k+1

)〈 ((
j − 1

k

)
x ⊗ y −

(
j − 1

k + 1

)
y ⊗ x

)
⊗ e(j−1)∗

k |L(ωj−1t) ⊗aux L
(j)(t)|(2̂x ∧ ŷ) ⊗ x̂j−k′−2 ⊗ ŷk′

〉
= detqL(ω

j−2t) · 〈
e(j−1)∗
k

∣∣L(j−1)(t)
∣∣̂xj−k′−2 ⊗ ŷk′ 〉

,

which, by (2.9) and (2.19), in turn yields〈
f

(j−1)∗
k

∣∣L(ωj−1t) ⊗aux L
(j)(t)

∣∣f (j−1)

k′
〉 = 〈

e(j−1)∗
k

∣∣L(j−1)(t)
∣∣e(j−1)

k′
〉
q(ωj−2t)X. (2.22)

From definition (2.17) of τ (j)-matrices, relations (2.18), (2.22) and (2.21) imply the following
result.

Proposition 2.1. The τ (j)-matrices satisfy the (recursive) fusion relation by setting τ (0) = 0,

τ (1) = I ,

τ (2)(ωj−1t)τ (j)(t) = z(ωj−1t)Xτ (j−1)(t) + τ (j+1)(t), j � 1, (2.23)

where z(t) = q(t)L with q(t) in (2.9).
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2.3. Boundary fusion relation in generalized τ (2)-model

For convenience, we introduce the following convention for a family of commuting operators
O(t):

[O]n(t) :=
n−1∏
i=0

O(ωit), n ∈ Z�0,

and the average of O(t) is defined by

〈O〉(= 〈O〉(tN)) = [O]N(t).

The ‘classical’ L-operator of the BBS model is the average of (2.1):

L(tN) =
(

〈A〉 〈B〉
〈C〉 〈D〉

)
=

(
1 + (−1)N+1κN tN γ N − δN

(−1)N+1(αN − βN)tN
βN δN

κN + (−1)N+1αNγ NtN

)
. (2.24)

The averages 〈AL〉, 〈BL〉, 〈CL〉, 〈DL〉 of the monodromy matrix (2.4) coincide with the
classical Lth monodromy associated with (2.24) [45]:5(

〈AL〉 〈BL〉
〈CL〉 〈DL〉

)
(tN) = L1(t

N)L2(t
N) · · ·LL(tN)(= L(tN)L). (2.25)

By (2.20), the (k, l)th entry L(j)

k,l (t) of L(j)(t) is equal to the expression in (2.20) with vi = x̂

for 1 � i � j − 1 − l, and ŷ otherwise. Hence one can express L(j)(t) in terms of entries in
(2.1). For example, the matrix-form of L(3)(= L(3)(t)) is [A]2(t), A(ωt)B(t), [B]2(t)

A(ωt)C(t) + C(ωt)A(t), A(ωt)D(t) + C(ωt)B(t), D(ωt)B(t) + B(ωt)D(t)

[C]2(t), C(ωt)D(t), [D]2(t)

 . (2.26)

Note that one can also write L(3)
0,1 = A(ωt)B(t), L(3)

1,1 = D(ωt)A(t) + B(ωt)C(t), L(3)
1,0 =

D(ωt)C(t). Among the L(j)-entries for a general j , the following ones can be derived by
setting ⊗vi = x̂j−1−l ⊗ ŷl in (2.20):

L(j)

0,0 = [A]j−1(t), L(j)

0,j−1 = [B]j−1(t), L
(j)

j−1,0 = [C]j−1(t), L(j)

j−1,j−1 = [D]j−1(t),

L(j)

0,l = [A]j−l−1(ω
lt)[B]l(t), L(j)

j−1,l = [C]j−l−1(ω
lt)[D]l(t), 1 � l � j − 2.

(2.27)

By the relation, e(j+1)∗
k = e(j)∗

k−1 ⊗ y + e(j)∗
k ⊗ x, for the dual basis of Cj ’s, one can compute

L(j+1)

k,l in terms of L(j)-entries using the following recursive relations:

L(j+1)

k,0 (t) = L(j)

k−1,0(ωt)C(t) + L(j)

k,0(ωt)A(t),

L(j+1)

k,l (t) = L(j)

k−1,l−1(ωt)D(t) + L(j)

k,l−1(ωt)B(t), for l � 1,
(2.28)

5 The formula (2.25) about averages of the monodromy matrix is stated in [45, p 966] as a consequence of
proposition 5 (ii) there (or in [46, lemma 1.5]), but without proof, and also not with the required form which
could be misprinted in both papers. The correct version should be 〈�(T )〉 = 〈T1〉〈T2〉, instead of �(〈T 〉) = 〈T1〉〈T2〉.
As the author could not find a proof in the literature about the correct Tarasov’s statement, here in this paper we provide
a mathematical justification about the correct statement in propositions 2.2 and 4.1 for the generalized τ (2)-model and
the XXZ spin chain, respectively.
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by which, one can in principal derive the expression of L(j)

k,l (t) from those in (2.27) for a given j .

However it is still not easy to obtain a close form of L(j)

k,l for all j except the following (k, l)’s:

L(j)

1,0(t)=
(

j−2∑
i=0

ωj−i−2[A]i (ω
j−i−1t)[A]j−i−2(ω

−1t)

)
C(t), L(j)

1,0, A,C ↔ L(j)

j−2,j−1,D,B,

(2.29)

L(j)

j−2,0(t)=
(

j−2∑
i=0

ωiA(ωj−2i−2t)

)
[C]j−2(t), L(j)

j−2,0, A,C ↔ L(j)

1,j−1,D,B.

Indeed, the above formulae are derived by the induction method using the relations,
[C]k(ωt)A(t) = ωkA(ω−kt)[C]k(t), [B]k(ωt)D(t) = ωkD(ω−kt)[B]k(t) for k � 0, which
follows from the equalities:

C(t)A(t) = A(ω−1t)C(t), B(t)D(t) = ωD(ω−1t)B(t). (2.30)

In the study of CPM [10], the τ (j)-fusion relations (2.23) with rapidity parameters in (2.12)
are truncated at τ (N+1) with the following boundary fusion relation:

τ (N+1)(t) = z(t)Xτ (N−1)(ωt) + u(t)I, u(t) := (〈AL〉 + 〈DL〉)(tN), (2.31)

where AL,DL are operators in (2.4). We are going to indicate that relation (2.31) always
holds in the generalized τ (2)-model for arbitrary parameters. Express the diagonal entries
of (L + 1)th monodromy matrix in (2.4) by AL+1(t) = (AL ⊗ A + BL ⊗ C)(t), BL+1(t) =
(AL ⊗ B + BL ⊗ D)(t) , (AL+1, BL+1, AL, BL → CL+1,DL+1, CL,DL); hence their averages:
〈AL+1〉 = [AL ⊗ A + BL ⊗ C]N(t), 〈BL+1〉 = [AL ⊗ B + BL ⊗ D)]N(t), etc. Since AL,BL

and CL,DL satisfy (2.7), using expression (2.16) for L(N+1)
k,0 , L(N+1)

k,N , one obtains

〈AL+1〉 = 〈AL〉 ⊗ 〈A〉 + 〈BL〉 ⊗ 〈C〉 +
N−1∑
k=1

[AL]N−k(ω
kt)[BL]k(t) ⊗ L(N+1)

k,0 (t),

〈BL+1〉 = 〈AL〉 ⊗ 〈B〉 + 〈BL〉 ⊗ 〈D〉 +
N−1∑
k=1

[AL]N−k(ω
kt)[BL]k(t) ⊗ L(N+1)

k,N (t), (2.32)

AL+1, BL+1, AL, BL −→ CL+1,DL+1, CL,DL.

Using the above relations and the following proposition on the vanishing L(N+1)
k,0 , L(N+1)

k,N for
k �= 0, N , one can determine the average 〈AL〉, 〈BL〉 etc through relation (2.25).

Proposition 2.2. The entries L(N+1)
k,0 , L(N+1)

k,N of L(N+1)(t) (on the 1st and Nth column) are all

zeros except L(N+1)
0,0 = 〈A〉, L(N+1)

N,0 = 〈C〉, L(N+1)
0,N = 〈B〉, L(N+1)

N,N = 〈D〉. As a consequence,
relation (2.25) holds; hence u(t) in (2.31) is equal to tr(L(tN)L) with L(tN) in (2.24).

Proof. We only need to show the vanishing of L(N+1)
k,0 , L(N+1)

k,N for k �= 0, N . The relation (2.32)
with L = 1 yields

〈A2〉 = 〈A〉2 + 〈B〉〈C〉 +
N−1∑
k=1

[A]N−k(ω
kt)[B]k(t) ⊗ L(N+1)

k,0 (t),

〈B2〉 = 〈A〉〈B〉 + 〈B〉〈D〉 +
N−1∑
k=1

[A]N−k(ω
kt)[B]k(t) ⊗ L(N+1)

k,N (t),

which are operators invariant when changing t by ωt . Note that XiZk(i, k ∈ ZN) form a
C-basis of all N-by-N matrices; and the term [A]N−k(ω

it)[B]k(ωj t) in the above expressions
can be written in the form

∑N−1
m=0 pm(t)XmZk for some pm(t) ∈ C[t]. By this, each term
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appeared in the above expression of 〈A2〉, 〈B2〉 is again invariant under t → ωt , i.e., for
1 � k � N − 1 and e = 0, N , the equality holds:

[A]N−k(ω
k+1t)[B]k(ωt) ⊗ L(N+1)

k,e (ωt) = [A]N−k(ω
kt)[B]k(t) ⊗ L(N+1)

k,e (t).

This implies A(t) ⊗ L(N+1)
k,e (ωt) = A(ωkt) ⊗ L(N+1)

k,e (t) by the relation,
A(ωkt)[A]N−k(ω

k+1t)[B]k(ωt) = A(t)[A]N−k(ω
kt)[B]k(t). The linear independence

of matrices 1 and X in the expression of A(t) in turn yields

L(N+1)
k,e (ωt) = L(N+1)

k,e (t) = ωkL(N+1)
k,e (t).

Therefore L(N+1)
k,0 (t) = L(N+1)

k,N (t) = 0 for 1 � k � N − 1. �

Remark. For the superintegrable τ (2)-model (2.13), by (2.24), the above proposition implies
the averages of Lth monodromy matrix-entries are 〈AL〉 = 〈DL〉= (1−tN )L, 〈BL〉= 〈CL〉= 0.
In CPM where the rapidities p, p′ of τ (2)-model are in (2.12) with p fixed and t = xp′yp′ for
p′, one can compute the eigenvalues of (2.24) using the coordinate λ = µN to express

the u(t) in (2.31) for CPM: u(t) = αp(λp′) + αp(λp′) where αp(λp′) = ( k′(1−λpλp′ )2

λp′ (1−k′λp)2

)L

([10, (4.27)]).

By proposition 2.2, the (N + 1)th fused L-operator L(N+1) can be written in the form

L(N+1)(t) =
〈A〉 ∗ 〈B〉

0 L̃(N−1)(t) 0
〈C〉 ∗′ 〈D〉


where ∗ = (

L(N+1)
0,1 , . . . , L(N+1)

0,N−1

)
, ∗′ = (

L(N+1)
N,1 , . . . , L(N+1)

N,N−1

)
, L̃(N−1)(t) =(̃

L(N−1)
k,l (t)

)
0�k,l�N−2 with L̃(N−1)

k,l (t) := L(N+1)
k+1,l+1(t). The boundary fusion relation (2.31) is

equivalent to the relation between τ (N−1)-matrix and the Lth monodromy matrix for L̃(N−1):

z(t)Xτ (N−1)(ωt) = trCN−1

(
L⊗

	=1

L̃(N−1)
	 (ωt)

)
. (2.33)

The above relation (2.33) will hold if we can prove L̃(N−1)(ωt) similar to L(N−1)(ω2t)· detqL(t)
by a diagonal similarity transformation M (independent of t):

L̃(N−1)(ωt) = ML(N−1)(ω2t)M−1 · detqL(t). (2.34)

We now determine the above similarity relation for N = 2, 3, 4. For N = 2 where ω = −1,
by (2.26) one has L̃(1)(ωt) = A(t)D(ωt) − ωC(t)B(ωt) = detqL(t), hence follows (2.33).
For N = 3, we use (2.20) to express L(N+1)-entries

L̃(2)
0,0(ωt) = A(t)A(ω2t)D(ωt) + A(t)C(ω2t)B(ωt) + C(t)A(ω2t)B(ωt),

L̃(2)
0,1(ωt) = B(t)B(ω2t)C(ωt) + B(t)D(ω2t)A(ωt) + D(t)B(ω2t)A(ωt),

L̃(2)
1,0(ωt) = A(t)C(ω2t)D(ωt) + C(t)A(ω2t)D(ωt) + C(t)C(ω2t)B(ωt),

L̃(2)
1,1(ωt) = B(t)D(ω2t)C(ωt) + D(t)B(ω2t)C(ωt) + D(t)D(ω2t)A(ωt).

By (2.30) and (2.9), one arrives

L̃(2)
0,0(ωt) = A(ω2t)A(t)D(ωt) + (ωA(t) + ω2A(ωt))ωC(t)B(ωt) = A(ω2t) detqL(t),

L̃(2)
0,1(ωt) = B(ω2t)B(t)C(ωt) + B(t)(D(ω2t) + ω2D(ωt))A(ωt) = −ωB(ω2t) detqL(t),

L̃(2)
1,0(ωt) = C(ω2t)(A(ωt) + ωA(ω2t))D(ωt) + C(ω2t)C(t)B(ωt) = −ω−1C(ω2t) detqL(t),

L̃(2)
1,1(ωt) = (ωD(ωt) + D(t))B(t)C(ωt) + D(ω2t)D(t)A(ωt) = D(ω2t) detqL(t).
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Hence (2.34) holds with M = dia[−ω, 1]. Indeed, the same method as in above arguments,
together with (2.27) and (2.29), yields the following four relations for an arbitrary N with
ωN = 1:

L̃(N−1)
0,0 (ωt) = L(N−1)

0,0 (ω2t) detqL(t), L̃(N−1)
0,N−2(ωt) = −ωL(N−1)

0,N−2(ω
2t) detqL(t),

L̃(N−1)
N−2,0(ωt) = −ω−1L(N−1)

N−2,0(ω
2t) detqL(t), L̃(N−1)

N−2,N−2(ωt) = L(N−1)
N−2,N−2(ω

2t) detqL(t).

(2.35)

For N = 4 where ω = √−1, using the explicit form of A,B,C,D in (2.1) to compute
the L̃(3)-entries other than those in (2.35), then comparing L̃(3) with (2.26), we can verify that
relation (2.34) holds with M = dia

[−√−1, 1−√−1
2 , 1

]
. For an arbitrary given N, the similar

transformation in (2.34) could be obtained by direct calculation; however, the general structure
has not been found yet.

3. Algebraic Bethe ansatz in generalized τ (2)-model

In this section, we use the algebraic-Bethe-ansatz techniques to discuss certain BBS models
centred at the superintegrable τ (2)-model, where the pseudovacuum state exists.

First we note that the non-trivial kernel of the operator C(t) in (2.1) is equivalent to
〈C〉 = 0. By scaling the t-variable and changing X by ωkX, one may set α = β = −1, i.e.,

L(t) =
(

A(t) B(t)

C(t) D(t)

)
=

(
1 + tκX (γ − δX)Z

−t (1 − X)Z−1 −tγ − δ
κ
X

)
. (3.1)

In this section, we shall consider only the case (3.1) with the following constraint:

γ �= ω−kδ for k = 2, . . . , N, (3.2)

which will be called the special BBS model in this paper. The quantum determinant in (2.9)
now takes the form

detqL(t) = q(t)X, q(t) = ωh1(t)h2(t), where
(3.3)

h1(t) := (1 + κt), h2(t) :=
(

−γ t − ω−1δ

κ

)
.

The special BBS model with one further constraint 〈A〉 = 〈D〉, equivalently γ N = δN =
(−κ)N , implies γ = ω−1δ = −ω−i0κ for some i0. By substituting γ t by t, then applying a
similar transformation, L(t) is equivalent to the case γ = 1, with B(t) = (1 − ωX)Z,A(t) =
1 − ωi0 tX,D(t) = −t + ωi0X, and h1(t) = ωi0h2(t) = h(t), where h(t) is in (2.14). In
particular, when i0 = 0, one arrives the superintegrable τ (2)-model (2.13).

3.1. Bethe equation of the special BBS model

Denote the eigenvectors of the CN -operator X by

fk := Zk

 ∑
n∈ZN

|n〉
 , X(fk) = ω−kfk, for k ∈ ZN .

Let AL,BL,CL,DL be the entries of the Lth monodromy matrix (2.4) with L(t) in (3.1)
satisfying condition (3.2), and the transfer matrix is given by τ (2)(ω−1t) = AL(t) + DL(t). It
is easy to see the C(t) in (3.1) has one-dimensional kernel space generated by v := f1, and
A(t)v = h1(ω

−1t)v,D(t) = h2(t)v, with h1, h2 in (3.3). Define the pseudo-vacuum:

�L = ⊗L
	=1v	 ∈ L⊗ CN, v	 = v for all 	,
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then AL(t)�L = h1(ω
−1t)L�L , DL(t)�L = h2(t)

L�L,CL(t)�L = 0 and

BL(t)�L = (γ − δω2)

L∑
	=1

h1(ω
−1t)	−1h2(t)

L−	(1 ⊗ · · · ⊗ Z	th ⊗ ⊗ · · · ⊗ 1)�L. (3.4)

Note that for L = 1, we have �L = f1 and BL(t) = B = (γ − δX)Z. Then Bk�L =
ω−k

∏k
i=2(γ − δω−i−1)fk+1 for 0 � k � N − 1 are nonzero vectors by (3.2), which form a

basis of CN .
For m distinct nonzero complex numbers tj , 1 � j � m, we consider the vector

(t1, . . . , tm) :=
m∏

i=1

BL(ti)�L ∈ L⊗ CN,

and define the t-function,

�(t; t1, . . . , tm) = h1(ω
−1t)L

F (ω−1t)

F (t)
+ h2(t)

Lω−m F(ωt)

F (t)
, F (t) :=

m∏
i=1

(
1 − t−1

i t
)
.

(3.5)

The polynomial-criterion of �(t; t1, . . . , tm) is given by the following Bethe equation for ti’s:

h2(ti)
L

h1(ω−1ti)L
= −ωm F(ω−1ti)

F (ωti)
, i = 1, . . . , m. (3.6)

By (2.5), the ZN -charge of pseudo-vacuum and Bethe vectors are

X�L = ω−L�L, X(t1, . . . , tm) = ω−L−m(t1, . . . , tm). (3.7)

Proposition 3.1. The polynomial condition of �(t; t1, . . . , tm) is equivalent to the Bethe
equation (3.6) for ti’s, which is the necessary and sufficient condition for (t1, . . . , tm) as a
common eigenvector of the transfer matrices τ (2)(ω−1t). In this situation, �(t; t1, . . . , tm) is
the eigen-polynomial for the eigenvector (t1, . . . , tm).

Proof. Write the function (3.5) in the form

�(t; t1, . . . , tm) = h1(ω
−1t)L

m∏
i=1

(t − ωti)

ω(t − ti)
+ h2(t)

L

m∏
i=1

ωt − ti

ω(t − ti)
.

By (2.10), (AL(t)+DL(t))
∏m

i=1 BL(ti)�L is equal to the sum of �(t; t1, . . . , tm)(t1, . . . , tm)

and �k(t; t1, . . . , tm)B(t)
∏m

i=1,i �=k BL(ti)�L, (k = 1, . . . , m) where

�k(t; t1, . . . , tm) := (ω − 1)t

ω(t − tk)

(
h1(ω

−1tk)
L

∏
i �=k

(tk − ωti)

ω(tk − ti)
− h2(tk)

L
∏
i �=k

ωtk − ti

ω(tk − ti)

)
.

By this, (t1, . . . , tm) is a common eigenvector of τ (2)(ω−1t) provided that �k(t; t1, . . . ,

tm) = 0 for all k, which is equivalent to the Bethe equation (3.6). Then follows the proposition.
�

Remark. In the above algebraic-Bethe-ansatz discussion of the BBS model, we set
C(t) = −t (1 − X)Z−1, which is the one appeared in superintegrable CPM. One may
also set B(t) = (1 − ωX)Z instead, and let C(t) = t (α − βX)Z−1 with parameters α, β;
then conduct a similar algebraic-Bethe-ansatz discussion. In the latter setting, the pseudo-
vacuum �′

L = ⊗(f0)	 satisfies the relations, BL(t)�′
L = 0, AL(t)�′

L = h1(t)
L�′

L, and
DL(t)�′

L = ωh2(ω
−1t)�′

L. With the same argument in proposition 3.1 but using the relation
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(2.11) instead, one considers the Bethe vector  ′
L(t1, . . . , tm) := ∏m

i=1 CL(ti)�
′
L, with the

Bethe equation

h1(t)
L

h2(ω−1t)L
= −ωL+m F(ω−1t)

F (ωt)
, (3.8)

which in turn yields the eigenvalue expression for  ′
L(t1, . . . , tm):

�′(t; t1, . . . , tm) = ωL+mh2(ω
−1t)L

F (ω−1t)

F (t)
+ h1(t)

L F (ωt)

F (t)
. (3.9)

We now consider the special BBS model (3.1) in N = 2 case where ω = −1, and the Bethe
equation (3.6) becomes(

γ ti − δ/κ

κti − 1

)L

= (−1)m+1, i = 1, . . . , m.

The solutions of the above relation are determined by nonzero roots of (γ t − δ/κ)L =
±(κt − 1)L, each has L solutions when γ L �= ±κL �= δL:

rk = δ − κσ k
L

κ
(
γ − σ k

Lκ
) , r ′

k = δ − (−1)1/Lσ k
L

κ
(
γ − (−1)1/Lσ k

Lκ
) , (1 � k � L), σL := e

2π
√−1
L .

For generic γ, κ and δ, the Bethe states are expected to generate the quantum space
L⊗ C2, e.g., for L = 2, it follows from the expression of the Bethe states �2(=
f1 ⊗ f1),(r1),(r2),(r ′

1, r
′
2):

1

γ − δ
(ri) = h1(−ri)f1 ⊗ f0 + h2(ri)f0 ⊗ f1, (i = 1, 2),

1

(γ − δ)2
(r ′

1, r
′
2) = γ + δ

γ − δ
(h1(−r ′

1)h1(−r ′
2) + h2(r

′
1)h2(r

′
2))�2

+ (h1(r
′
1)h2(r

′
2) − h2(−r ′

1)h1(−r ′
2))f0 ⊗ f0.

Note that in the superintegrable case (2.13), �2 is the only Bethe state in the above setting.
Indeed in this situation, τ (2)(−t) = (1 + t2)(1 + X ⊗ X) − 2t (Z ⊗ Z)(1 − X ⊗ X), with the
eigenvalues 2(1 + t2),±4t , and eigenspaces 〈�2, f0 ⊗ f0〉, 〈f0 ⊗ f1 ∓ f1 ⊗ f0〉 respectively.

For N � 3, it is not easy to obtain the complete solutions of the Bethe equation (3.6) in

general, hence difficult to determine the space generated by Bethe states in
L⊗ CN . For m = 1,

the Bethe equation (3.6) becomes h2(t)
L = h1(ω

−1t)L, which has L solutions in the generic
cases. By (3.4), the Bethe states for m = 1 likely form a basis for the subspace generated by
(1 ⊗ · · · ⊗ Z	th ⊗ ⊗ · · · ⊗ 1)�L for all 	.

3.2. Algebraic Bethe ansatz in the superintegrable chiral Potts model

We now discuss the superintegrable τ (2)-model (2.13) in the setting of the previous subsection,
then compare the result with those in the theory of superintegrable CPM [1, 5].

In the study of the chiral-Potts-transfer matrix in superintegrable CPM, there are quantum
numbers, Pa and Pb, appeared in the eigenvalues, which satisfy the conditions

0 � r(:= Pa + Pb) � N − 1, Pb − Pa ≡ Q + L (mod N),

LPb ≡ m(Q − 2Pb − m) (mod N)
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with Q the ZN -charge as before (in [1, (C.3) and (C.4)], [5, (6.16)], or in [40, (59) and (63)]).
The Bethe equation of superintegrable CPM is given by (in [1, (4.4)], [5, (6.22)]):

HCP(ω
−1ti)

L

HCP(ti)L
= −ω−r F (ω−1ti)

F (ωti)
, (i = 1, . . . , m), F (t) :=

m∏
i=1

(
1 − t−1

i t
)
, (3.10)

where HCP(t) is the polynomial defined by

HCP(t) = 1 − tN

1 − t

(
= 1 − tN

h(t)

)
. (3.11)

Define the normalized τ (2)- and τ (j)-matrices ([42, (3.4)]) by setting T (0) = 0, T (1)(t) =
HCP(ω

−1t)L, and

T (2)(t) = ω−Pb (1 − tN )Lτ (2)(ω−1t)

(1 − ω−1t)L(1 − t)L
, T (j)(t) = ω−(j−1)Pb (1 − tN )Lτ (j)(ω−1t)∏j−2

k=−1(1 − ωkt)L
. (3.12)

Then T (j)-eigenpolynomials determined by F(t) in (3.10) satisfy relations ([42, (3.8)–(3.11)]):

T (2)(t)F (t) = ω−rHCP(t)
LF (ω−1t) + HCP(ω

−1t)LF (ωt),

T (j)(t) = F(ω−1t)F (ωj−1t)

j−1∑
k=0

HCP(ω
k−1t)Lω−kr

F (ωk−1t)F (ωkt)
, (j � 1), (3.13)

T (j)(t)T (2)(ωj−1t) = ω−rH(ωj−1t)LT (j−1)(t) + H(ωj−2t)LT (j+1)(t), (j � 1),

T (N+1)(t) = ω−rT (N−1)(ωt) + 2H(ω−1t)L.

Note that the above T (j)-relations are equivalent to the fusion relations (2.23) and (2.31) for
τ (j)’s in the superintegrable τ (2)-model (in [40, (53)]). The second relation of (3.13) in turn
yields

T (N)(t) = ωPbF (ω−1t)F (ωN−1t)

N−1∑
k=0

PCP(t
N)

where PCP(t
N) is the evaluation polynomial of the Onsager-algebra representation for the

degenerate eigenspaces in the superintegrable CPM [40]:

PCP(t
N) = ω−Pb

N−1∑
k=0

HCP(t)
L(ωkt)−Pa−Pb

F (ωkt)F (ωk+1t)
. (3.14)

Bethe equation (3.6) in the superintegrable τ (2)-model is the same as (3.10), but with the
constraint r = Pa + Pb ≡ −m (mod N). Eigenvalue (3.5) of the Bethe state (t1, . . . , tm)

associated with the Bethe solution ti’s of (3.6) is characterized by the relation

ωm(1 − tN )L�(t; t1, . . . , tm)

h(ω−1t)Lh(t)L
F (t) = ωmHCP(t)

LF (ω−1t) + HCP(ω
−1t)LF (ωt).

The above relation is the same as (3.13) where the factor ω−Pb in formula (3.12) is identified
with ωm. By this, we arrive the conclusion that the τ (2)-eigenspace for the Bethe state
(t1, . . . , tm) satisfies the constrain −m ≡ Pa + Pb ≡ Pb (mod N), hence lies in sectors with
Pa ≡ 0,−m ≡ Pb, hence −Q ≡ L + m (mod N). In particular, the pseudo-vacuum �L is the
ground-state for Pa = Pb = 0 with Q ≡ −L (mod N).

We may discuss the algebraic Bethe ansatz of superintegrable CPM in the setting described
in the remark of proposition 3.1 with the pseudo-vacuum �′

L and Bethe state  ′(t1, . . . , tm).
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The Bethe equation (3.8) now becomes (3.6) with r ≡ −(L + m) (mod N). The eigenvalue
(3.9) for  ′

L(t1, . . . , tm) is expressed by

(1 − tN )L�′(t; t1, . . . , tm)

h(ω−1t)Lh(t)L
F (t) = ωL+mHCP(t)

LF (ω−1t) + HCP(ω
−1t)LF (ωt).

Then the τ (2)-eigenspace generated by  ′(t1, . . . , tm) has the constraint, Pb ≡ 0,−Pa ≡ L+m

(mod N), hence Q ≡ m (mod N). Now the pseudo-vacuum �′
L is the ground-state for

Pb = 0, Pa ≡ −L (mod N) with Q = 0.
The above discussion about the superintegrable CPM has indicated that the τ (2)-eigenstates

in the algebraic-Bethe-ansatz approach appear only in the sectors with Pa = 0 or Pb = 0, not
for the rest sectors. The full spectrum of τ (2)-eigenvalues and the symmetry of its degeneracy
has been well studied in [40] through the chiral Potts transfer matrix as the Baxter’s Q-operator
for the τ (2)-matrix, and the complete detailed structure was obtained by the functional-relation
method. Nevertheless, the algebraic-Bethe-ansatz approach does provide a mechanism to
understand some τ (2)- eigenvectors in certain sectors.

4. The XXZ spin chain of cigher spin at roots of unity

In this section, we study the fusion relation and Bethe ansatz of XXZ chain of spin d−1
2 at roots

of unity for positive integers d � 2 with the anisotropy parameter q. Here the discussion of
the XXZ spin chain will always assume with the even chain-size L. We shall denote ω = q2;
when q is a Nth root of unity, we consider only the odd N case, then take q, ω(:= q2), q

1
2 all

to be primitive Nth roots of unity.
The L-operator of the XXZ chain of spin- 1

2 is the operator with C2-auxiliary and C2-
quantum space:

L(s) =
(

L0,0 L0,1

L1,0 L1,1

)
(s), s ∈ C, (4.1)

where the C2-(quantum-space) operator-entries Li,j are given by

L0,0 =
(

a 0
0 b

)
, L0,1 =

(
0 0
c 0

)
, L1,0 =

(
0 c

0 0

)
, L1,1 =

(
b 0
0 a

)
,

with a, b, c the q-dependent s-functions

a = a(s) = sq
−1
2 − s−1q

1
2 , b = b(s)(= a(qs)) = sq

1
2 − s−1q

−1
2 , c = q − q−1.

(4.2)

Operator (4.1) satisfies the YB relation,

R6v(s/s
′)(L(s)

⊗
aux

1)(1
⊗
aux

L(s ′)) = (1
⊗
aux

L(s ′))(L(s)
⊗
aux

1)R6v(s/s
′), (4.3)

where R6v is the R-matrix

R6v(s) =


s−1q − sq−1 0 0 0

0 s−1 − s q − q−1 0
0 q − q−1 s−1 − s 0
0 0 0 s−1q − sq−1

 .

Hence the monodromy matrix of size L,
L⊗

	=1

L	(s) =
(

A(s) B(s)

C(s) D(s)

)
(4.4)
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again satisfies the YB relation (4.3), i.e. the entries A, B, C, D form the well-known ABCD-
algebra, in which the following relations hold:
[A(s), A(s ′)] = [B(s), B(s ′)] = [C(s), C(s ′)] = [D(s), D(s ′)] = 0,

A(s)B(s ′) = fs,s ′B(s ′)A(s) − gs,s ′B(s)A(s ′), A ↔ B, A, B −→ C, D,

D(s)B(s ′) = fs ′,sB(s ′)D(s) − gs ′,sB(s)D(s ′), B ↔ D, B, D −→ A, C.

(4.5)

where the functions fs,s ′ , gs,s ′ are defined by

fs,s ′ = s2q2 − s ′2

q(s2 − s ′2)
, gs,s ′ = ss ′(q2 − 1)

q(s2 − s ′2)
. (4.6)

Then follow the relations

A(s)

m∏
i=1

B(si) =
(

m∏
i=1

fs,i

)(
m∏

i=1

B(si)

)
A(s) −

m∑
k=1

gs,k

 m∏
i=1,i �=k

fk,i

 B(s)

m∏
i=1,i �=k

B(si)A(sk),

D(s)

m∏
i=1

B(si) =
(

m∏
i=1

fi,s

) (
m∏

i=1

B(si)

)
D(s) −

m∑
k=1

gk,s

 m∏
i=1,i �=k

fi,k

 B(s)

m∏
i=1,i �=k

B(si)D(sk),

A(s) ↔ D(s), B(s) ↔ C(s). (4.7)

Here we write only i for si in the subscripts of fs,s ′ , gs,s ′ .
As the matrix R6v(q) is of rank 1, the quantum determinant of the YB solution L(s) in

(4.3) is defined by

R6v(q)(L(qs)
⊗
aux

1)(1
⊗
aux

L(s)) = (1
⊗
aux

L(s))(L(qs)
⊗
aux

1)R6v(q) =: detqL(s) · R6v(q),

(4.8)

or equivalently,

A(qs)C(s) = C(qs)A(s), B(qs)D(s) = D(qs)B(s),

B(s)A(qs) = A(s)B(qs), C(s)D(qs) = D(s)C(qs),

detqL(s) = A(qs)D(s) − C(qs)B(s) = D(qs)A(s) − B(qs)C(s)

= D(s)A(qs) − C(s)B(qs) = A(s)D(qs) − B(s)C(qs). (4.9)

For the local L-operator (4.1), detqL(s) = a(s)a(q2s), so the quantum determinant of (4.4) is
equal to a(s)La(q2s)L. The statements in lemma 2.1 are valid for the operator L(s) by replacing
L(ωt)⊗auxL(t), detqL(t) by L(s)⊗auxL(qs), detqL(s) in (2.19), and L(ωj−2t)⊗aux· · ·⊗auxL(t)
by L(s)⊗aux · · ·⊗aux L(qj−2s) in (2.20). Now we consider the transfer matrix of the six-vertex
model of even size L, defined by the trace of (4.4). Denote

T (2)(t) = s2L(A(s) + D(s)), t := qs2 ∈ C.

Then T (2)(t) form a family of t-polynomial operators acting on the quantum space
L⊗ C2. As in

the discussion of subsection 2.2, we constructed in [42] the fusion matrices T (j)(t)(0 � j ∈ Z)

from the fused L-operator L(j)(s) associated with L(s) in (4.1), which is a matrix with
C2-quantum and Cj -auxiliary space, as follows. With the basis in (2.15) for the Cj -auxiliary
space, L(j)(s) = (

L
(j)

k,l (s)
)

0�k,l�j−1 where the C2-(quantum-space) operator L
(j)

k,l (s) is defined

by6

L
(j)

k,l (s) =
〈
e(j)∗
k

∣∣L(s) ⊗aux L(qs) ⊗aux · · · ⊗aux L(qj−2s)
∣∣e(j)

l

〉∏j−3
i=0 b(qis)

. (4.10)

6 One may use L(j)-operator defined by revising the order of L(s)⊗aux L(qs)⊗aux · · ·⊗aux L(qj−2s) in its definition,
replaced by L(qj−2s) ⊗aux L(qj−3s) ⊗aux · · · ⊗aux L(s) as the order in (2.16). The latter form is related to the first
expression in (4.8), instead of the second one in the former case.
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The relations, (2.16), (2.21) and (2.22), now turn to

L
(j+1)

k,l (s) = 1

b(qj−2s)

〈
e(j+1)∗
k

∣∣L(j)(s) ⊗aux L(qj−1s)
∣∣e(j+1)

l

〉
,〈

e(j+1)∗
l

∣∣L(j)(s) ⊗aux L(qj−1s)
∣∣f (j−1)

k

〉 = 0, (4.11)〈
f

(j−1)∗
k

∣∣L(j)(s) ⊗aux L(qj−1s)
∣∣f (j−1)

l

〉 = b(qj−1s)
〈
e(j−1)∗
k

∣∣L(j−1)(s)
∣∣e(j−1)

l

〉
.

From the first relation above, one obtains the explicit form of L
(j)

k,l (s) for j � 2 by induction

argument ([42, proposition 4.2]): L
(j)

k,l

( = L
(j)

k,l (s)
)
(0 � k, l � j − 1) are zeros except

k − l = 0,±1, in which cases

L
(j)

k,k =
(

a(qks) 0
0 a(qj−1−ks)

)
, L

(j)

k+1,k =
(

0 qj−1−k − q−j+1+k

0 0

)
,

L
(j)

k−1,k =
(

0 0
qk − q−k 0

)
.

The fusion matrix T (j)(t) is defined by T (0) = 0, T (1)(t) = (1 − ω−1t)L, and for j � 2,

T (j)(t) = (
sq

j−2
2

)L
traux

(
L⊗

	=1

L
(j)

	 (s)

)
, t = qs2 ∈ C. (4.12)

The relations in (4.11) and the explicit form of L
(j)

k,l ’s in turn yield the fusion relation of T (j)’s
with the truncation identity:

T (j)(t)T (2)(ωj−1t) = (1 − ωj−1t)LT (j−1)(t) + (1 − ωj−2t)LT (j+1)(t), j � 1,

T (N+1)(t) = T (N−1)(ωt) + 2(1 − ω−1t)L, (4.13)

parallel to the fusion relations, (2.23) and (2.31), in the generalized τ (2)-model.

4.1. Fusion relation and algebraic Bethe ansatz in XXZ spin chain of higher spin

When interchanging the auxiliary and quantum spaces of the dth fused L-operator L(d)(s) for
a positive integer d, we arrive the L-operator of XXZ chain of spin- d−1

2 , which is the matrix
with the C2-auxiliary and Cd -quantum space:

L(s) =
(

L0,0 L0,1

L1,0 L1,1

)
(s), s ∈ C, (4.14)

where the entries (La,b)
i ′
i (0 � i, i ′ � d − 1) of La,b are zeros except (L0,0)

i
i = (L1,1)

d−i−1
d−i−1 =

a(qis), (0 � i � d − 1), and (L0,1)
i
i+1 = qd−1−i − q−d+1+i , (L1,0)

i+1
i = qi+1 − q−i−1, (0 �

i < d − 1). Here La,b are operators of the quantum space Cd with the standard basis
ei (i = 0, . . . , d−1). It is well known that the above expression of La,b gives the d-dimensional
irreducible representation of Uq(sl2) (see, e.g., [31, 32]),

L0,0 = sq
d−2

2 K̂
−1
2 − s−1q

−(d−2)

2 K̂
1
2 , L0,1 = (q − q−1)ê−,

L1,0 = (q − q−1)ê+, L1,1 = sq
d−2

2 K̂
1
2 − s−1q

−(d−2)

2 K̂
−1
2 ,

(4.15)

with the relations, K̂ê±K̂−1 = q±2ê± and [ê+, ê−] = K̂−K̂−1

q−q−1 , where K̂
1
2 = qSz

and Sz the

spin-operator of Cd : Sz = dia[ d−1
2 , d−3

2 , . . . , −d+1
2 ]. By the direct verification, one finds that
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the L-operator (4.14) again satisfies the six-vertex YB relation (4.3), hence the Lth monodromy
matrix

L⊗
	=1

L	(s) = L1(s) ⊗ · · · ⊗ LL(s) =
(

A(s) B(s)

C(s) D(s)

)
, L	(t) := L(t) at site 	, (4.16)

has the entries forming the ABCD-algebra with the pseudo-vacuum � and quantum
determinant (4.9):

� = L⊗ e0 ∈ L⊗ Cd , detqLL(s) = a(qds)La(s)L · id. (4.17)

The trace of (4.16) defines a family of commuting (
L⊗ Cd)-operators, called the transfer matrix

of the XXZ chain of spin- d−1
2 :

t(s) = A(s) + D(s),

which commute with qSz = L⊗ K̂
1
2 , where Sz is the spin-operator of

L⊗ Cd . Similar to the
discussion of (2.16) and (4.10), we consider the fused L-operator associated with (4.14)7:

L(j)

k,l (s) = 〈
e(j)∗
k

∣∣L(s) ⊗aux L(qs) ⊗aux · · · ⊗aux L(qj−2s)
∣∣e(j)

l

〉
,

and define the fusion matrix

t(j)(s) = trCj

(
L⊗

	=1

L(j)

	 (s)

)
,

with t(2)(s) = t(s). Then t(j)(s) form a family of commuting operators of
L⊗ Cd . Similar to

(4.11), we now have

L(j+1)

k,l (s) = 〈
e(j+1)∗
k

∣∣L(j)(s) ⊗aux L(qj−1s)
∣∣e(j+1)

l

〉
,〈

e(j+1)∗
l

∣∣L(j)(s) ⊗aux L(qj−1s)
∣∣f (j−1)

k

〉 = 0,〈
f

(j−1)∗
k

∣∣L(j)(s) ⊗aux L(qj−1s)
∣∣f (j−1)

l

〉 = detqL(qj−2s)
〈
e(j−1)∗
k

∣∣L(j−1)(s)
∣∣e(j−1)

l

〉
,

then follows the fusion relation of the XXZ chain of spin- d−1
2 , parallel to (2.23) in the

generalized τ (2)-model, by setting t(0) = 0, t(1) = I :

t(j)(s)t(2)(qj−1s) = a(qd+j−2s)La(qj−2s)Lt(j−1)(s) + t(j+1)(s), j � 1. (4.18)

Using the t-variable in (4.12), and normalizing t(j)(s) by

T (j)(t) = (
s(j−1)q

(j−1)(d+j−4)

2
)L

t(j)(s), t = qs2, (4.19)

one can write the fusion relation (4.18) in terms of t-polynomial operators T (j)(t):

T (j)(t)T (2)(ωj−1t) = h(ωj−3t)Lh(ωd+j−3t)LT (j−1)(t) + T (j+1)(t), (j � 1) (4.20)

with T (0) = 0, T (1) = I and h(t) in (2.14).

7 Note that for d > 2, L(j)

k,l (s) have no common factors in contrast to the case d = 2 in (4.10). Hence we use
the notation L for the L-operator for a general d to distinguish it from the L-operator (4.10) for d = 2, in which
case L

(j)

k,l (s) = (
∏j−3

i=0 b(qis))L
(j)

k,l (s). However the fusion matrix t(j) will still be divisible by certain factors after
multiplying the normalization factors in (4.19) and (4.27).
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We now discuss the algebraic Bethe ansatz of XXZ chain of spin- d−1
2 [44]. With the

pseudo-vacuum � in (4.17), A(s)� = a(s)L�, D(s)� = a(qd−1s)L� , and C(s)� = 0.
For m square-distinct nonzero complex numbers sj , 1 � j � m, we consider the vector

�(s1, . . . , sm) = ∏m
i=1 B(si)� ∈ L⊗ Cd with Sz = L(d−1)−2m

2 , and define the s-function

�(s; s1, . . . , sm) = a(s)L
m∏

i=1

fs,i + a(qd−1s)L
m∏

i=1

fi,s, (4.21)

where fs,s ′ are functions in (4.6). The regular-criterion for the s-function (4.21) in the nonzero
s-domain is given by the Bethe equation

a(si)
L

a(qd−1si)L
= −q2m

m∏
k=1

s2
k − q−2s2

i

s2
k − q2s2

i

, i = 1, . . . , m, (4.22)

in which case by (4.7) and the same argument in proposition 3.1, �(s1, . . . , sm) is an
eigenvector of the transfer matrices t(s) with the eigenvalue �(s; s1, . . . , sm). Using the
variable t in (4.19) and ti = qs2

i , (4.22) and (4.21) now take the form

h(ω−1ti)
L

h(ωd−2ti)L
= −ω− L(d−1)−2m

2
F(ω−1ti)

F (ωti)
(i = 1, . . . , m), F (t) :=

m∏
i=1

(
1 − t−1

i t
)
, (4.23)

sLq
L(d−2)

2 �(s; s1, . . . , sm) = h(ωd−2t)L
F (ω−1t)

F (t)
+ ω

L(d−1)−2m

2 h(ω−1t)L
F (ωt)

F (t)
. (4.24)

In the root-of-unity case where both q, ω are Nth roots of unity, we are going to derive
the evaluation polynomial for the root-of-unity symmetry study of the XXZ chain of spin- d−1

2
with 2 � d � N . Define the t-polynomial

H(t)(= Hd(t)) := 1 − tN∏N−1
k=d−1 h(ωkt)

=
d−2∏
k=0

(1 − ωkt), 2 � d � N. (4.25)

Using the above function H(t), one writes the Bethe equation (4.23) in a similar form as (3.6)

H(ω−1ti)
L

H(ti)L
= −ω−r F (ω−1ti)

F (ωti)
, (i = 1, . . . , m), F (t) :=

m∏
i=1

(
1 − t−1

i t
)
, (4.26)

where 0 � r � N − 1, r ≡ L(d−1)−2m

2 (= Sz) (mod N). Now we consider only those Bethe
states �(s1, . . . , sm) so that {t1, · · · , tm} contains no complete N-cyclic string, (which means
{ωj t0}j∈ZN

for some t0 �= 0). Normalize the T (j)-operator (4.19) by8

T(j)(t) := ω−(j−1)Sz

(1 − tN )T (j)(t)∏N+j−3
k=d−2 h(ωkt)

, j � 1. (4.27)

By (4.24), the T(2)-eigenvalue λ(2)(t; t1, . . . , tm) for the Bethe state �(s1, . . . , sm) is the
t-polynomial characterized by the relation

λ(2)(t; t1, . . . , tm)F (t) = ω−rH(t)LF (ω−1t) + H(ω−1t)LF (ωt). (4.28)

Relation (4.20) in turn yields the fusion relation of T(j)’s with T(0) = 0, T(1)(t) = H(ω−1t)L

and

T(j)(t)T(2)(ωj−1t) = ω−Sz

H(ωj−1t)LT(j−1)(t) + H(ωj−2t)LT(j+1)(t), j � 1. (4.29)

8 For d = 2, the T(j) here differs from T (j) in (4.12) only by the factor ω(j−1)Sz
: T(j)(t) = ω−(j−1)Sz

T (j)(t), hence
in sectors Sz ≡ 0 (mod N), it defines the same operator which was used in the discussion of [42].
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Using the same argument as [42], (where formulae (3.8) and (3.9) correspond to (4.28) and
(4.29) here), one obtains the expression of T(j)-eigenvalue λ(j)(t; t1, . . . , tm) for the Bethe
state �(s1, . . . , sm):

λ(j)(t; t1, . . . , tm) = F(ω−1t)F (ωj−1t)

j−1∑
k=0

H(ωk−1t)Lω−kr

F (ωk−1t)F (ωkt)
, j � 1, (4.30)

which is a t-polynomial by the Bethe equation (4.26). Then one arrives the boundary fusion
relation for T(j)’s (on the space spanned by all eigenspaces of the Bethe states):

T(N+1)(t) = ω−Sz

T(N−1)(ωt) + 2H(ω−1t)L. (4.31)

Formulae (4.29) and (4.31) are the complete fusion relations of the XXZ spin chain of spin- d−1
2

at roots of unity, which in d = 2 case, are equivalent to (4.13). By (4.30), one writes the
T(N)-eigenvalue in the form

λ(N)(t; t1, . . . , tm) = ω−r t rF (ω−1t)2P6V(tN),

where P6V(ξ) is the function defined by

P6V(tN) :=
N−1∑
k=0

H(ωkt)L(ωkt)−r

F (ωkt)F (ωk+1t)
, F (t) :=

m∏
i=1

(
1 − t−1

i t
)
. (4.32)

The Bethe relation (4.26) for ti’s is the polynomial-condition for P6V, in which case by (4.30),
the T(j)-eigenpolynomial and P6V-polynomial are related by

T(j)(t) + ω−jrT(N−j)(ωj t) = (ω−1t)rF (ω−1t)F (ωj−1t)P6V(tN), 0 � j � N,

T(N)(t) = (ω−1t)rF (ω−1t)2P6V(tN).

The above relations reflect the QQ-relations in the functional-relation setting of XXZ spin
chain of higher spin for a proper Q-operator which encodes the root-of-unity property; the
construction of such Q-operator is not known yet except the spin- 1

2 case [42]. Note that for

d = 2, N,H(t) = 1 − t , 1−tN

1−ω−1t
, and P6V(ξ) is the Drinfeld polynomial in [18, 19, 36, 42] for

the root-of-unity XXZ chain of spin- 1
2 , N−1

2 respectively. For a general d, the P6V-polynomial
is indeed the evaluation polynomial for the root-of-unity symmetry of XXZ spin chain of higher
spin, which will be verified in the next subsection.

4.2. The sl2-loop-algebra symmetry of in the root-of-unity XXZ spin chain of higher spin

In this subsection, we are going to show the sl2-loop-algebra symmetry of the XXZ chain of
spin- d−1

2 with the Nth root-of-unity anisotropic parameter q, even chain-size L, odd N, and the
total spin Sz ≡ 0 (mod N) for 2 � d � N . The P6V-polynomial in (4.32) will be shown as the
evaluation polynomial, i.e., the Drinfeld polynomial, for the sl2-loop-algebra representation.
For d = 2, the result is known by works in [15, 19, 18], and for d = N , the conclusion is
obtained in [36]. Here we are going to derive the root-of-unity symmetry of XXZ spin chain
of higher spin along the line in [15, 19].

Define

S± =
L∑

i=1

K̂
1
2 ⊗ · · · ⊗ K̂

1
2︸ ︷︷ ︸

i−1

⊗ê± ⊗ K̂
−1
2 ⊗ · · · ⊗ K̂

−1
2︸ ︷︷ ︸

L−i

,

T ± =
L∑

i=1

K̂
−1
2 ⊗ · · · ⊗ K̂

−1
2︸ ︷︷ ︸

i−1

⊗ê± ⊗ K̂
1
2 ⊗ · · · ⊗ K̂

1
2︸ ︷︷ ︸

L−i

.
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The leading and lowest terms of entries of (4.16) are given by

A± = lim
s±→∞

(±s)∓Lq
∓L(d−2)

2 A(s), B± = lim
s±→∞

(±s)∓(L−1)q
∓(L−1)(d−2)

2
B(s)

q − q−1
,

C± = lim
s±→∞

(±s)∓(L−1)q
∓(L−1)(d−2)

2
C(s)

q − q−1
, D± = lim

s±→∞
(±s)∓Lq

∓L(d−2)

2 D(s).

Using (4.15), one finds

q±Sz = A∓ = D±, T − = B+, S− = B−, S+ = C+, T + = C−, (4.33)

which give rise to the representation of Uq(ŝl2) on
L⊗ Cd (by k−1

0 = k1 = q2Sz

, e0 = T −, f0 =
T +, e1 = S+, f1 = S−). Consider the normalized nth power of operators S±, T ± as in
[15, 36], S±(n) = S±n

[n]! , T ±(n) = T ±n

[n]! , (n � 0) for a generic q, then take the limit as q being the

Nth root of unity, where [n] = qn−q−n

q−q−1 , [n]! = ∏n
i=1[i] and [0]! := 1. For qN = 1, one obtains

the operators,

S±(N) =
∑

0�ki<d,k1+···+kL=N

1

[k1]! · · · [kL]!
⊗L

i=1 K̂i

−1
2 (

∑
j<i − ∑

j>i )kj
ê
ki

i±,

T ±(N) =
∑

0�ki<d,k1+···+kL=N

1

[k1]! · · · [kL]!
⊗L

i=1 K̂i

1
2 (

∑
j<i − ∑

j>i )kj
ê
ki

i±,

with the relation T ±(N) = RS∓(N)R−1, where R is the spin-inverse operator of
L⊗ Cd . Note that

by ⊗L
i=1K̂i

±1
2 (

∑
j<i − ∑

j>i )kj
ê
ki

i± = ⊗L
i=1ê

ki

i±K̂i

±1
2 (

∑
j<i − ∑

j>i )kj , the order of powers of K̂i and êi±
in the above formulae can be interchanged for the same operator. The 2Sz

N
and S±(N), T ±(N)

give rise to a sl2-loop-algebra representation with their relations to Chevalley generators as
follows:

−H0 = H1 = 2Sz

N
, E0 = T −(N), E1 = S+(N),

(4.34)
F0 = T +(N), F1 = S−(N).

The above Chevalley basis is related to the mode basis of the sl2-loop algebra, e(n), f (n),

h(n)(n ∈ Z) by e(0) = S+(N), f (0) = S−(N), e(−1) = T +(N), f (1) = T −(N), h(0) = 2Sz

N
.

Set m = N, si = xq
N+1−2i

2 (i = 1, . . . , N) in (4.7), one obtains

A(s)

N∏
i=1

B(si) = x2 − s2qN+1

x2qN − s2q

N∏
i=1

B(si)A(s)

+
ss1(q

2 − 1)

q
(
s2

1 − s2
) [N ]!

[N − 1]!
B(s)

N∏
i=2

B(si)A(s1), A, B ↔ D, C,

D(s)

N∏
i=1

B(si) = x2 − s2q−N−1

x2q−N − s2q−1

N∏
i=1

B(si)D(s)

− ssN(q2 − 1)

q
(
s2
N − s2

) [N ]!

[N − 1]!
B(s)

N−1∏
i=1

B(si)D(sN), D, B ↔ A, C.

Multiplying each B(si), C(si) in the above formulae by the factor (±s)
∓(L−1)
i q

∓(L−1)(d−2)

2 (q −
q−1)−1 at a generic q, then taking the ∞-limit for s±1

i at qN = 1, one arrives
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A(s)S±(N) = S±(N)A(s) + (∓sq
d−2

2 )±1S±(N−1)C(s)

B(s)q
∓Sz

,

D(s)S±(N) = S±(N)D(s) − (∓sq
d−2

2 )±1S±(N−1)C(s)

B(s)q
±Sz

,

A(s)T ∓(N) = T ∓(N)A(s) − (∓sq
d−2

2 )±1T ∓(N−1)B(s)

C(s)q
∓Sz

,

D(s)T ∓(N) = T ∓(N)D(s) + (∓sq
d−2

2 )±1T ∓(N−1)B(s)

C(s)q
±Sz

,

which imply

[t(s), S±(N)] = (
sq

d−2
2

)±1
S±(N−1)C(s)

B(s)(q
Sz − q−Sz

),

[t(s), T ∓(N)] = −(
sq

d−2
2

)±1
T ∓(N−1)B(s)

C(s)(q
Sz − q−Sz

),

hence S±(N), T ±(N) commute with the transfer matrix t(s) in sectors Sz ≡ 0 (mod N). Denote

by V the subspace of
L⊗ Cj consisting all vectors with Sz ≡ 0 (mod N). Therefore the

T(2)- and T(j)-operators (4.27) when restricted on V possess the sl2-loop-algebra symmetry
by (4.34). Hence each degenerate eigenspace gives rise to a finite-dimensional irreducible
representation of sl2-loop algebra. It is shown in [12] that every such representation is obtained

by an irreducible representation of
M⊕ sl2 on ⊗M

k=1Cδk through evaluating the loop-variable
at a finite number of distinct nonzero complex numbers, a1, . . . , aM , with the evaluation
(Drinfeld) polynomial defined by P(ξ) = ∏M

k=1(1−akξ)δk−1. Hence the representation space
is generated the highest weight vector |v〉, i.e., the unique vector (up to scalars) with the
highest weight among 2Sz

N
-eigenspaces, and P(ξ) is expressed by

P(ξ) =
∑
r�0

µr(−ξ)r ,
S+(N)rT −(N)r

(r!)2
|v〉 = µr |v〉

with the degree equal to
∑M

k=1(δk − 1) ([18, (1.9)], [19, (1.17)]). The polynomial P(ξ) can
be determined by the following current ([19, (1.20)])9

E−(ξ) =
∞∑

n=0

f (n)ξn, (4.35)

whose pole-structure coincides with the zero-structure of P(ξ). Conjecturally, every Bethe
state is annihilated by S+(N), T +(N) ([19, (1.11)], [18, (5.1), (5.2) and section 5.2]), by which
a Bethe state �(s1, . . . , sm) is the highest weight vector of the sl2-loop-algebra representation
to which it belongs. We are going to determine the current (4.35) by the ‘vanishing N-string’
method in [19].

Consider the average of a commuting family of operators O(s):

〈O〉(= 〈O〉(sN)) =
N−1∏
i=0

O(qis).

As in (2.25) of the generalized τ (2)-model, one can determine the averages of monodromy
matrix (4.16) of the spin- d−1

2 six vertex model as follows:

Proposition 4.1. For a positive integer L (no even condition required), the average of the
Lth monodromy matrix (4.16) for 2 � d � N coincides with the classical Lth monodromy
associated with (4.14); as a consequence, the averages of the entries are given by10

〈A〉 = 〈D〉 = (sN − s−N)L, 〈B〉 = 〈C〉 = 0. (4.36)
9 Here we use the current slightly different from the one used in [19, (1.20)] since we employ another, but equivalent,
set of representatives for the Chevalley basis in this paper.
10 The 〈B〉 = 0 for d = 2 is the formula [19, (1.36)] in the vanishing discussion for the complete N-string Bethe
ansatz.
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Proof. Parallel to (2.32) in the generalized τ (2)-model, the following relations about averages
of the (L + 1)- and Lth monodromy matrix hold:

〈AL+1〉 = 〈AL〉 ⊗ 〈L0,0〉 + 〈BL〉 ⊗ 〈L1,0〉 +
N−1∑
k=1

[AL]N−k(s)[BL]k(q
N−ks) ⊗ L(N+1)

k,0 (s),

〈BL+1〉 = 〈AL〉 ⊗ 〈L0,1〉 + 〈BL〉 ⊗ 〈L1,1〉 +
N−1∑
k=1

[AL]N−k(s)[BL]k(q
N−ks) ⊗ L(N+1)

k,N (s),

AL+1, BL+1, AL, BL −→ CL+1, DL+1, CL, DL,

where [O]n(s) := ∏n−1
i=0 O(qis) for operators O(s) and non-negative integers n. When

L = 1, the average of monodromy matrix is given by 〈L0,0〉 = 〈L1,1〉 = sN − s−N , and
〈L0,1〉 = 〈L1,0〉 = 0. Hence it suffices to show L(N+1)

k,0 (s) = L(N+1)
k,N (s) = 0 for 1 � k � N − 1.

Since L0,0, L1,1 are interchanged under the conjugation of the spin-inverse operator of Cd ,
and the same for L0,1, L1,0, the definition of L(N+1)

k,0 and L(N+1)
k,N in turn yield the relation:

L(N+1)
N−k,N (s) = R−1L(N+1)

k,0 (s)R. So one needs only to show L(N+1)
k,0 = 0 for 1 � k � N −1. Note

that Li,j ’s are d × d matrices with Li,i diagonal, and Li,j (i �= j) upper- or lower-triangular
with Ld

i,j = 0. This implies L(N+1)
k,0 (s) = 0 for k � d. Hence the first relation in above about

the averages of AL+1 and AL for L = 1 yields

〈A2〉 = 〈L0,0〉 ⊗ 〈L0,0〉 +
d−1∑
k=1

[L0,0]N−k(s)L
k
0,1 ⊗ L(N+1)

k,0 (s). (4.37)

Since Lk
0,1 for 1 � k � d − 1 are linear independent lower-triangular matrices, the invariant of

〈A2〉 under s → qs implies that the same holds for each term in the summation of the above
formula. Hence [L0,0]N−k(s)L

k
0,1 ⊗ L(N+1)

k,0 (s) = [L0,0]N−k(qs)Lk
0,1 ⊗ L(N+1)

k,0 (qs), then

L0,0(s)L
k
0,1 ⊗ L(N+1)

k,0 (s) = L0,0(q
N−ks)Lk

0,1 ⊗ L(N+1)
k,0 (qs), 1 � k � d − 1.

Compare the (k, 0)th and (d − 1, d − 1 − k)th entries of Lk
0,1 in the above equality, then one

finds

a(qks)L(N+1)
k,0 (s) = a(s)L(N+1)

k,0 (qs), a(qd−1s)L(N+1)
k,0 (s) = a(qd−1−ks)L(N+1)

k,0 (qs),

where a(s) is the function in (4.2). Hence a(qks)

a(s)
L(N+1)

k,0 (s) = a(qd−1s)

a(qd−1−ks)
L(N+1)

k,0 (s), which by
a(qks)

a(s)
�= a(qd−1s)

a(qd−1−ks)
, implies L(N+1)

k,0 (s) = 0 for 1 � k � d − 2. For k = d − 1, one has the

relation a(qd−1s)L(N+1)
d−1,0(s) = a(s)L(N+1)

d−1,0(qs). Since L(N+1)
d−1,0(s) = ψ(s)Ld−1

1,0 where ψ(s) is a(
N

d−1

)
-term sum of (N − d + 1)-products of a(qis)’s, one has a(qd−1s)ψ(s) = a(s)ψ(qs).

Therefore, ψ(s) = α
∏d−2

k=0 a(qks) where α is a function invariant under s → qs, hence being
a constant scalar by the degree consideration . By this, the relation (4.37) becomes

〈A2〉 = 〈L0,0〉 ⊗ 〈L0,0〉 + α

(
N−1∏
i=0

a(qis)

)
Ld−1

0,1 ⊗ Ld−1
1,0 , α ∈ C.

From the commutation relation of A and B in (4.9), 〈A2〉 commutes with B2(s) =
(L0,0 ⊗ L0,1 + L0,1 ⊗ L1,0)(s). Since

[
B2(s), Ld−1

0,1 ⊗ Ld−1
1,0

] �= 0, the scalar α is equal to 0,

which implies L(N+1)
d−1,0(s) = 0. Therefore L(N+1)

k,0 (s) = 0 for all k, hence follows the result. �

We now relate the sl2-loop-algebra generators (4.34) with the vanishing averages of
B, C in (4.36). In later discussions, we shall consider the logarithmic derivative of relations
in (4.5). For simplicity, we shall use the subscripts of variables s, q, . . . to indicate the
logarithmic partial-derivative s∂s, q∂q, . . . of operators or functions, e.g. Bs = s(∂sB),
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Bq = q(∂qB), (fs,s ′)s = s(∂sfs,s ′), (fs,s ′)s ′ = s ′(∂s ′fs,s ′) etc. By (4.36), the s-derivative
of 〈B〉, 〈C〉 vanishes, and the q-derivative of 〈B〉, 〈C〉 is expressed by

〈B〉s = 0, 〈B〉q =
N−1∑
n=0

Bq(sq
n)

N−1∏
i=0,i �=n

B(sqi), B ↔ C.

By (4.33), the leading and lowest terms of 〈B〉q, 〈C〉q are given by

S−(N) = lims→0(−s)N(L−1)〈B〉q(s)
2N(1 − ω) · · · (1 − ωN−1)

, T −(N) = lims→∞ s−N(L−1)〈B〉q(s)
2N(1 − ω) · · · (1 − ωN−1)

,

(4.38)

S+(N) = lims→∞ s−N(L−1)〈C〉q(s)
2N(1 − ω) · · · (1 − ωN−1)

, T +(N) = lims→0(−s)N(L−1)〈C〉q(s)
2N(1 − ω) · · · (1 − ωN−1)

.

As in (2.1)–(2.14) of [19], for a given function ϕ(s), there associates the current:

B(N)(s) = B(N)
1 (s) + B(N)

2 (s) (4.39)

invariant under s → qs, where B(N)
1 (s) = 〈B〉q, B(N)

2 (s) = ∑N−1
n=0 ϕ(sqn)Bs(sq

n)
∏N−1

i=0,i �=n

B(sqi), which satisfies the relations: [B(N)(s), B(s ′)] = [B(N)(s), B(N)(s ′)] = 0 ([19, (1.39)
and (1.40)]). For a Bethe state �(s1, . . . , sm), we are going to determine the Fabricius–McCoy
current, which means the current (4.39) for a suitable ϕ(s) with the following property:

t(s)

(
m′∏
l=1

B(N)(xl)

)
�(s1, . . . , sm) =

(
m′∏
l=1

B(N)(xl)

)
t(s)�(s1, . . . , sm) (4.40)

for all xl and integer m′ � 1. By differentiating relations in (4.7), one has

A(s)Bs(sn)

m∏
i=1,i �=n

B(si) =
(

m∏
i=1

fs,i

)
Bs(sn)

 m∏
i=1,i �=n

B(si)

 A(s)

−
m∑

k=1

gs,k

m∏
i=1,i �=k

fk,i


sn

B(s)

 m∏
i=1,i �=k

B(si)

 A(sk)

+

(
m∏

i=1

fs,i

)
sn

(
m∏

i=1

B(si)

)
A(s)

−
m∑

k=1

gs,k

 m∏
i=1,i �=k

fk,i

 B(s)

 m∏
i=1,i �=k

B(si)A(sk)


sn

,

(
A(s)

m∏
i=1

B(si)

)
q

=
(

m∏
i=1

fs,i

)(
m∏

i=1

B(si)A(s)

)
q

−
m∑

k=1

gs,k

m∏
i=1,i �=k

fk,i


q

B(s)

 m∏
i=1,i �=k

B(si)

 A(sk)

+

(
m∏

i=1

fs,i

)
q

(
m∏

i=1

B(si)

)
A(s) −

m∑
k=1

gs,k

 m∏
i=1,i �=k

fk,i


×

B(s)

m∏
i=1,i �=k

B(si)A(sk)


q

,

A(s), fs,i , fk,i , gs,k ↔ D(s), fi,s , fi,k, gk,s .
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Set m = N, si = xqi for 1 � i � N(= 0) ∈ ZN in the above relations, then using the
relations

fk,k+1 = 0,

N−1∏
i=0

fs,i

N−1∏
i=0

fi,s = 1,

 N−1∏
i=0,i �=k

fk,i


q

=
 N−1∏

i=0,i �=k

fi,k


q

= 2

q − q−1
,

 N−1∏
i=0,i �=k

fk,i


sn

= (δk,n − δk,n−1)
2

q − q−1
,

 N−1∏
i=0,i �=k

fi,k


sn

= (δk,n − δk,n+1)
−2

q − q−1
,

one finds

A(s)B(N)
1 (x) = B(N)

1 (x)A(s) − 2

q − q−1

N−1∑
n=0

gs,nB(s)

 N−1∏
i=0,i �=n

B(xqi)

 A(xqn),

D(s)B(N)
1 (x) = B(N)

1 (x)D(s) +
2

q − q−1

N−1∑
n=0

gs,nB(s)

 N−1∏
i=0,i �=n

B(xqi)

 D(xqn),

A(s)B(N)
2 (x) = B(N)

2 (x)A(s) +
2

q − q−1

N−1∑
n=0

gs,nB(s)(ϕ(xqn+1)

−ϕ(xqn))

 N−1∏
i=0,i �=n

B(xqi)

 A(xqn),

D(s)B(N)
2 (x) = B(N)

2 (x)D(s) +
2

q − q−1

∑
n

gs,nB(s)(ϕ(xqn−1)

−ϕ(xqn))

 N−1∏
i=0,i �=n

B(xqi)

 D(xqn).

Hence

A(s)B(N)(x) = B(N)(x)A(s) +
2B(s)

q − q−1

N−1∑
n=0

gs,n(ϕ(xqn+1)

−ϕ(xqn) − 1)

 N−1∏
i=0,i �=n

B(xqi)

 A(xqn),

D(s)B(N)(x) = B(N)(x)D(s) +
2B(s)

q − q−1

N−1∑
n=0

gs,n(ϕ(xqn−1)

−ϕ(xqn) + 1)

 N−1∏
i=0,i �=n

B(xqi)

 D(xqn).

The relation 〈B〉 = 0 yields N−1∏
i=0,i �=n

B(xqi)

 A(xqn)�(s1, . . . , sm)

=
 N−1∏

i=0,i �=n

B(xqi)

 (
aL(xqn)

m∏
i=1

fxqn,si

)
�(s1, . . . , sm),
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i=0,i �=n

B(xqi)

 D(xqn)�(s1, . . . , sm)

=
 N−1∏

i=0,i �=n

B(xqi)

 (
aL(xqn+d−1)

m∏
i=1

fsi ,xqn

)
�(s1, . . . , sm),

hence condition (4.40) for m′ = 1 is provided by the following constraint of ϕ(s):

(ϕ(sq) − ϕ(s) − 1)aL(s)

m∏
i=1

fs,si
+ (ϕ(sq−1) − ϕ(s) + 1)aL(sqd−1)

m∏
i=1

fsi ,xqn = 0 (4.41)

for all s. Use the variable t in (4.19) and write the function (4.32) by P6V(tN) = ∑N−1
k=0 p(ωkt)

with p(t) := H(t)Lt−r

F (t)F (ωt)
. Up to the factor q−(d−2)L+mt

−L
2 +rF (ωt)F (ω−1t)

∏d−3
i=0 (1 − ωit)−L,

(4.41) is equivalent to (ϕ(sq) − ϕ(s) − 1)p(ω−1t) = (ϕ(s) − ϕ(sq−1) − 1)p(t). Hence
ϕ(sq) − ϕ(s) − 1 = α(tN)p(t) for some function α(tN). The relation ϕ(sqN) = ϕ(s) in
turn yields α(tN) = −N∑N−1

i=o p(ωi t)
; hence, the ϕ-condition (4.41) is equivalent to the following

equation of ϕ:

ϕ(sq) − ϕ(s) − 1 = −Np(t)

P6V(tN)
. (4.42)

Up to additive sN -functions, the above equation has the unique solution given by

ϕ(s) = −∑N
k=0 kp(ωt)

P6V(tN)
, p(t) = H(t)Lt−r

F (t)F (ωt)
. (4.43)

Note that by 〈B〉s = 0, all solutions ϕ(s) of (4.42) define the same current (4.39). Therefore
we have shown that with ϕ in (4.43), the relation (4.40) holds for m′ = 1, then also true for all
positive integers m′ by the same induction argument in [19, section 2D]. Hence we obtain the
Fabricius–McCoy current given by (4.39) with ϕ(s) in (4.43). Now we show the following
result.

Theorem 4.1. Let �(s1, . . . , sm) be the Bethe state for the solution, ti(= qs2
i ), 1 � i � m,

of the Bethe equation (4.26), and P6V(ξ) be the polynomial (4.32) defined by ti’s. Then the
current E−(ξ) in (4.35) and the Fabricius–McCoy current B(N)(s) in (4.40) are related by

(−s)N(L−1)B(N)(s) = 2N

(
N−1∏
i=0

(1 − ωi)

)
E−(tN).

As a consequence, 1
N

P6V(ξ) is the evaluation polynomial for the sl2-loop-algebra
representation determined by �(s1, . . . , sm).

Proof. When acting on the Bethe state �(s1, . . . , sm), the tN -operators, E−(tN) and
(−s)N(L−1)B(N)(s), both satisfy the property (4.40); hence, they are proportional to each
other. By 〈B〉s = 0, the lowest term of (−s)N(L−1)B(N)(s) is contributed only by the term
from B(N)

1 (s), which is equal to 2N
∏N−1

i=0 (1 − ωi)S−(N) by (4.38); while the current E−(ξ)

has the constant term E−(0) = f (0) = S−(N). Hence follow the results. �

Remark. By the same argument in [19, section 3A], the current B(N)(s) in the above
proposition has poles only at the zeros of P6V(tN), which is consistent with that for E−(ξ).
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4.3. Comparison of the XXZ chain of spin-N−1
2 at Nth root-of-unity and superintegrable CPM

It was noticed [1, 5] that the superintegrable CPM and the XXZ chain of spin-N−1
2 for qN = 1

share the same Bethe equation (up to the phrase factors). In this subsection, we compare the
symmetry of the degenerate eigenstates between two models, and provide the answer to a
question raised in [36].

Under the change of variables t = ωt ′, the polynomial (4.25) for the XXZ chain of
spin-N−1

2 and (3.11) for superintegrable CPM are related by

HN(t) = HCP(t
′),

by which, a six-vertex-Bethe-solution {ti}mi=1 of (4.26) is equivalent to a CPM-Bethe-
solution {t ′i }mi=1 of (3.10) for sectors, Sz

6V ≡ (Pa + Pb)CP = r (mod N), the T(2)-eigenvalue
λ(2)(t; t1, . . . , tm) in (4.28) the same as T (2)(t ′) in (3.13), and the identical evaluation
polynomials, (4.32) and (3.14): P6V(tN) = ω−r+PbPCP(t

N) ([36, proposition 4.1]). In
the theory of Onsager algebra symmetry of superintegrable CPM, the polynomial PCP(ξ)

is well understood as follows. It is known that the Onsager algebra can be realized as the
Lie-subalgebra of the sl2-loop algebra fixed by a standard sl2-involution and inverting the
loop-variable [38]. The (finite-dimensional) Onsager-algebra representation was known in
[14], and the rigorous mathematical theory has been fully developed and understood in [13],
in particular, the Hermitian irreducible representations have been completely classified. By
this, one finds PCP(ξ) is a simple ξ -polynomial with only negative real roots and the degree
mE = the integral part

[
(N−1)L−r−2m

N

]
, which implies the dimension 2mE for the degenerate

τ (2)-eigenspace as an irreducible Onsager-algebra representation ([40, theorem 2 and formula
(70)]). Correspondingly in the XXZ spin chain, one concludes only the spin- 1

2 representations
occur in the sl2-loop-algebra representation generated by the Bethe state �(s, s1, . . . , sm)

with 2mE -degeneracy for the t(2)-eigenspace, (by which, follows the answer of the question
raised in [36, proposition 4.2]). From the above discussion, the root-of-unity XXZ chain
of spin-N−1

2 and superintegrable CPM share the equivalent Bethe equation and evaluation
polynomial, with the same degeneracy of eigenstates for certain sectors, but they carry the
different type of symmetry structure. The Onsager-algebra symmetry of the superintegrable
CPM is inherited from the Baxter’s Q-matrix, indeed generated by the symmetry operators
of the quantum Hamiltonian chain (see [40, section 3]); while the root-of-unity symmetry
of the XXZ spin chain arises from the q-derivative (4.38) of vanishing-average-entries of the
monodromy matrix. It is pertinent to ask whether there exists a larger symmetry algebra than
the Onsager algebra in the superintegrable CPM as suggested by the XXZ spin chain. But,
the answer has not been found yet. The algebraic-Bethe-ansatz discussion of τ (2)-models in
section 3 could possibly provide certain clues to this end, though not clear at present. This is
also one of the reasons that we conduct the algebraic-Bethe-ansatz study of τ (2)-model in this
work.

5. Concluding remarks

In this paper, we have made a systematic account on the algebraic approach about the fusion
operators of the generalized τ (2)-model using ABCD-algebra techniques. The recursive fusion
relation (2.23) follows automatically from the construction of fused L-operators. Under the
modest and seemingly innocuous conjecture (2.34) supported by computational evidence in the
cases, we produce a logical explanation about the validity of boundary fusion relation (2.31)
for the generalized τ (2)-model, by which one can use the separation-of-variables method to
solve the eigenvector problem of the model in the generic cases [24, theorem 2]. On two
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special classes of τ (2)-model centred at the superintegrable one, we perform the algebraic-
Bethe-ansatz technique to study the Bethe equation and Bethe states. The efforts enable us
to reconstruct the τ (2)-eigenvalues of certain sectors among the complete spectra previously
known in the theory of superintegrable CPM [1, 5] through the functional-relation method.
With the similar argument, we discuss the root-of-unity XXZ spin chain of higher spin, and
obtain the fusion relations with truncation identity as in the spin- 1

2 case. Furthermore, the
algebraic-Bethe-ansatz technique can produce better quantitative results in the root-of-unity
XXZ spin chain about solutions of the Bethe equation than those in the τ (2)-model partly due
to the symmetric form of the six-vertex R-matrix. Indeed from the Bethe relation and fusion
relations, we successively extract the evaluation polynomial for the sl2-loop-algebra symmetry
in the root-of-unity XXZ spin chain of higher spin, verified in subsection 4.2 following the
line of the spin- 1

2 case in [15, 19]. Since results in the root-of-unity symmetry of XXZ spin
chain bear a remarkable quantitative and semi-qualitative resemblance to the Onsager-algebra
symmetry of superintegrable CPM, it would be desirable to have a Baxter’s Q-operator for the
XXZ spin chain of higher spin at roots of unity to pursuit the functional-relation study about
the symmetry as in the spin- 1

2 case [42]. Such Q-operator has not been found yet. The aid of
a special Q-operator in the XXZ spin chain to encode the root-of-unity symmetry will provide
a useful tool to make a detailed investigation about the degeneracy, much in the same way as
the Onsager-algebra symmetry does in the superintegrable CPM. In particular, in the spin-N−1

2
case it is possible to construct the Baxter’s Q-operator of the root-of-unity XXZ spin chain so
that the comparison in subsection 4.3 will be understood in a more satisfactory manner. A
programme along this line is under consideration, and progress would be expected. In this
work, we discuss the symmetry about the generalized τ (2)-model, and the XXZ spin chain of
higher spin. We also hope that our results will eventually lead to the understanding of other
models, such as the root-of-unity eight-vertex model in [16, 17, 21, 22]. This programme is
now under progress. For the root-of-unity symmetry of XXZ spin chain, our discussion can
be applied to a more general setting. But, just to keep things simple, we restrict our attention
in this paper only to even L, odd N and Sz ≡ 0 (mod N), and leave possible generalizations,
applications or implications to future work.

Acknowledgments

The author is pleased to thank Professor S Kobayashi for the hospitality in the spring of 2006
during the author’s stay at Department of Mathematics, U C Berkeley, where part of this work
was carried out. This work is supported in part by National Science Council of Taiwan under
grant no. NSC 94-2115-M-001-013.

References

[1] Albertini G, McCoy B M and Perk J H H 1989 Eigenvalue spectrum of the superintegrable chiral Potts model
Adv. Stud. Pure Math. vol 19 (London: Kinokuniya Academic) pp 1–55

[2] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic)
[3] Baxter R J 1989 Superintegrable chiral Potts model: thermodynamic properties, an ‘Inverse’ model, and a simple

associated Hamiltonian J. Stat. Phys. 57 1–39
[4] Baxter R J 1990 Chiral Potts model: eigenvalues of the transfer matrix Phys. Lett. A 146 110–4
[5] Baxter R J 1993 Chiral Potts model with skewed boundary conditions J. Stat. Phys. 73 461–95
[6] Baxter R J 2004 The six and eight-vertex models revisited J. Stat. Phys. 114 43–66 (Preprint cond-mat/0403138)
[7] Baxter R J 2004 Transfer matrix functional relation for the generalized τ2(tq ) model J. Stat. Phys. 117 1–25

(Preprint cond-mat/0409493)

http://dx.doi.org/10.1007/BF01023632
http://dx.doi.org/10.1016/0375-9601(90)90646-6
http://dx.doi.org/10.1007/BF01054336
http://dx.doi.org/10.1023/B:JOSS.0000037215.07702.93
http://www.arxiv.org/abs/cond-mat/0403138
http://dx.doi.org/10.1023/B:JOSS.0000044062.64287.b9
http://www.arxiv.org/abs/cond-mat/0409493


1510 S-S Roan

[8] Baxter R J 2005 Derivation of the order parameter of the chiral Potts model Phys. Rev. Lett. 94 130602 (Preprint
cond-mat/0501227)

[9] Bazhanov V V and Stroganov Yu G 1990 Chiral Potts model as a descendant of the six-vertex model J. Stat.
Phys. 59 799–817

[10] Baxter R J, Bazhanov V V and Perk J H H 1990 Functional relations for transfer matrices of the chiral Potts
model Int. J. Mod. Phys. B 4 803–70

[11] Bogoliubov N M, Izegin A G and Kitanine N A 1998 Correlation functions for a strong correlated boson system
Nucl. Phys. B 516 501–28

[12] Chari V and Pressley A 1991 Quantum affine algebras Commun. Math. Phys. 142 261–83
[13] Date E and Roan S S 2000 The structure of quotients of the Onsager algebra by closed ideals J. Phys. A: Math.

Gen. 33 3275–96 (Preprint math.QA/9911018)
Date E and Roan S S 2000 The algebraic structure of the Onsager algebra Czech. J. Phys. 50 37–44 (Preprint

cond-mat/0002418)
[14] Davies B 1990 Onsager’s algebra and superintegrability J. Phys. A: Math. Gen. 23 2245–61

Davies B 1991 Onsager’s algebra and the Dolan–Grady condition in the non-self case J. Math. Phys. 32 2945–50
[15] Deguchi T, Fabricius K and McCoy B M 2001 The sl2 loop algebra symmetry for the six-vertex model at roots

of unity J. Stat. Phys. 102 701–36 (Preprint cond-mat/9912141)
[16] Deguchi T 2002 Construction of some missing eigenvectors of the XYZ spin chain at the discrete coupling

constants and the exponentially large spectral degeneracy of the transfer matrix J. Phys. A: Math.
Gen. 35 879–95 (Preprint cond-mat/0109078)

[17] Deguchi T 2002 The 8V CSOS model and the sl2 loop algebra symmetry of the six-vertex model at roots of
unity Int. J. Mod. Phys. B 16 1899–905 (Preprint cond-mat/0110121)

[18] Deguchi T 2005 Regular XXZ Bethe states at roots of unity- as highest weight vectors of the sl2 loop algebra at
roots of unity Preprint cond-mat/0503564 v3

[19] Fabricius K and McCoy B M 2002 Evaluation parameters and Bethe roots for the six vertex model at roots
of unity (Progress in Mathematical Physics vol 23) ed M Kashiwara and T Miwa (Boston: Birkhäuser)
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